Scaling the Aldous-Broder chain on the high-dimensional torus

Anita Winter, University of Duisburg-Essen joint with Osvaldo Angtuncio-Hernández (Universidad del Mar) and Gabriel Berzunza-Ojeda (Liverpool)
"Branching processes and their applications"
Angers, $26^{\text {th }}$ May 2023

URIVERSITÄT

The uniform spanning tree

Given a finite connected graph $G=(V, E)$:

- A spanning tree is a connected subgraph $T=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ without loops.

- The UST is uniformly distributed on the space of all spanning trees.
\leadsto On the complete graph \mathbb{K}_{m} with m vertices the UST equals in law the family tree of a Bienaymé branching process with Poisson(1) offspring law conditioned to have m vertices.

The Aldous-Broder algorithm

[Aldous (1990)], [Tsoucas (1989)], [Broder (1989)]
(1) Consider the $R W(W(n))_{n \in \mathbb{N}_{0}}$ on G.
(2) Let W run until it has seen all vertices, and put

$$
E^{\prime}:=\left\{\left\{W\left(T_{v}-1\right), v\right\} ; v \in V \backslash\{W(0)\}\right\}
$$

with

$$
T_{v}:=\inf \{n \geq 0: W(n)=v\}
$$

the first hitting time of v.
$\leadsto G^{\prime}=\left(V, E^{\prime}\right)$ is the uniform spanning tree.

Example. $W(0)=3, W(1)=2, W(2)=3, W(3)=1, W(4)=2, W(5)=4, \ldots$

\leadsto A computationally faster algorithm relies on Loop Erased Random Walks, [Wilson (1996)]

Loop-erased random walk (LERW)

[LAWLER (1979)]
Let $\gamma([0, M]):=(\gamma(0), \ldots, \gamma(M)), M \in \mathbb{N}$, be a path on a locally finite connected graph $G=(V, E)$:

- Define the loop erasure $\operatorname{LE}(\gamma([0, M]))$ by erasing loops in the order they appear.

- A random walk $(W(n))_{n \in \mathbb{N}_{0}}$ on $G=(V, E)$ is the V-valued MC having jumps to every neighbor with the same probability.
- If W is transient, $\operatorname{LE}(W([0, \infty)))$ well-defined even if $M=\infty$.

Wilson's algorithm

We can construct a UST on a finite connected graph $G=(V, E)$ as follows:

- Pick arbitrary vertices $v_{0}, v_{1} \in V$, run a RW W starting in $W(0)=v_{0}$ until the first hitting time $T_{v_{1}}$ and let $\mathcal{T}_{1}:=\operatorname{LE}\left(W\left(\left[0, T_{v_{1}}\right]\right)\right)$.
- Given \mathcal{T}_{k}, pick $v_{k+1} \in V$, run a RW W starting in $W(0)=v_{k+1}$ independently of what happened before until the first hitting time $T_{\mathcal{T}_{k}}$ and let $\mathcal{T}_{k+1}:=\mathcal{T}_{k} \biguplus \operatorname{LE}\left(W\left(\left[0, \mathcal{T}_{\mathcal{T}_{k}}\right]\right)\right)$.

- Continue until all vertices are in the tree.
\leadsto Distance between two randomly sampled leaves X_{0} and X_{1} in the UST equals in distribution the length of $\operatorname{LE}\left(W\left(\left[0, T_{X_{1}}\right]\right)\right)$ with $W(0)=X_{0}$.

Coupling from the past: towards the Aldous-Broder chain

[personal communication Aldous with Diaconis]
Let RW W run from time $-\infty$ to time 0 , and put

$$
E^{\prime}:=\left\{\left\{v, W\left(L_{v}+1\right)\right\} ; v \in V \backslash\{W(0)\}\right\},
$$

with

$$
L_{v}:=\max \{n<0: W(n)=v\}
$$

the last hitting time of v.
$\leadsto G^{\prime}=\left(V, E^{\prime}\right)$ is the uniform spanning tree.

Example. ..., $W(-5)=2, W(-4)=3, W(-3)=1, W(-2)=2, W(-1)=4, W(0)=1$

The Aldous-Broder map

Let $\gamma=(\gamma(n))_{n \in \mathbb{N}}$ be a path on $G=(V, E)$:

- Define the Aldous-Broder map $\mathrm{AB}(\gamma)$ by letting for each $m \in \mathbb{N}$,
- vertex set. $T(m):=\{\gamma(0), \ldots, \gamma(m)\}$,
- root. $\varrho(m):=\gamma(m)$, and
- edge set. $E(m):=\left\{\left\{v, \gamma\left(L_{v}+1\right)\right\} ; v \in T(m-1)\right\}$.
\leadsto This yields a path with values in the space of rooted trees.
- If W is the RW on $G=(V, E)$, we refer to

$$
X:=\mathrm{AB}(W)
$$

as the Aldous-Broder chain.
\leadsto Question for today. Scaling limit as graph size goes to ∞ ?

What is a tree?

Identify graph-theoretical trees $G=(T, E)$ with (finite) metric measure spaces ($T, \mathrm{~d}_{g r}, \mu_{\text {lf }}$) where $\mathrm{d}_{g r}$ is the graph distance and $\mu_{l f}$ the uniform distribution on the set of leaves.

What is a tree?

Identify graph-theoretical trees $G=(T, E)$ with (finite) metric measure spaces $\left(T, \mathrm{~d}_{g r}, \mu_{\text {If }}\right)$ where $\mathrm{d}_{g r}$ is the graph distance and $\mu_{l f}$ the uniform distribution on the set of leaves.

What is a tree?

Identify graph-theoretical trees $G=(T, E)$ with (finite) metric measure spaces ($T, \mathrm{~d}_{g r}, \mu_{\text {If }}$) where $\mathrm{d}_{g r}$ is the graph distance and $\mu_{\text {If }}$ the uniform distribution on the set of leaves.

I am not a tree :-(I am a tree :-)

Definition

- A metric space (T, d) is called a metric tree if (T, d) is 0 -hyperbolic and contains all branch points.
- A metric measure tree (T, d, μ) is a metric tree together with a probability measure μ.
$\leadsto \mathbb{R}$-trees are path-connected metric trees.

Notions of convergence of metric (measure) spaces

- Gromov-Hausdorff. $\left(X_{n}, d_{n}\right)_{n \in \mathbb{N}} \xrightarrow[n \rightarrow \infty]{\mathrm{GH}}(X, d)$ iff there are a metric space (Z, r) and isometries $\phi_{n}: X_{n} \xrightarrow{n \rightarrow \infty} Z, n=1,2, \ldots$, and $\phi: X \rightarrow Z$ with

$$
d_{H}^{(Z, r)}\left(\phi_{1}\left(X_{n}\right), \phi(X)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

- Gromov-weak. $\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \underset{n \rightarrow \infty}{\text { Gw }}(X, d, \mu)$ iff there are a metric space (Z, r) and isometries $\phi_{n}: \operatorname{supp}\left(\mu_{n}\right) \rightarrow Z, n=1,2, \ldots$, and $\phi: \operatorname{supp}(\mu) \rightarrow Z$ with

$$
\left(\phi_{n}\right)_{*} \mu_{n} \underset{n \rightarrow \infty}{\longrightarrow}(\phi)_{*} \mu
$$

- Gromov-Hausdorff-weak. $\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \underset{\substack{\text { GHW }}}{\substack{\text { - }}}(X, d, \mu)$ iff there are a metric space (Z, r) and isometries $\phi_{n}: X_{n}^{\infty} \rightarrow Z, n=1,2, \ldots$, and $\phi: X \rightarrow Z$ with

$$
\left(\phi_{n}\right)_{*} \mu_{n} \underset{n \rightarrow \infty}{\longrightarrow}(\phi)_{*} \mu \quad \text { and } \quad d_{H}^{(Z, r)}\left(\phi_{1}\left(X_{n}\right), \phi(X)\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Useful facts and inclusions of notions of convergence

(1) $\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \underset{n \rightarrow \infty}{\text { GHW }}(X, d, \mu)$ implies
$\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \xrightarrow[n \rightarrow \infty]{\mathrm{GH}}(X, d, \mu)$ and $\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \xrightarrow[n \rightarrow \infty]{G \mathrm{w}}(X, d, \mu)$.
(2) [Greven, Pfaffelhuber \& W. (2009)] $\left(X_{n}, d_{n}, \mu_{n}\right)_{n \in \mathbb{N}} \xrightarrow[n \rightarrow \infty]{G w}(X, d, \mu)$ iff

$$
\left(d_{n}\left(U_{i}^{n}, U_{j}^{n}\right)\right)_{1 \leq i<j \leq k} \underset{n \rightarrow \infty}{\Longrightarrow}\left(d\left(U_{i}, U_{j}\right)\right)_{1 \leq i<j \leq k}
$$

for all $k \in \mathbb{N}, U_{1}^{n}, \ldots, U_{k}^{n}$ i.i.d. $\sim \mu_{n}$ and U_{1}, \ldots, U_{k} i.i.d. $\sim \mu$.

Scaling limit of the UST on the complete graph

[Aldous (1993)]

Theorem (The CRT as scaling limit)

For a critical offspring law with variance $0<\sigma^{2}<\infty$, let T_{N} be the Bienaymé tree conditioned to have N nodes. Then

$$
\frac{T_{N}}{\sqrt{\sigma^{2} N}} \underset{N \rightarrow \infty}{G H w} \text { CRT }
$$

where CRT is the Continuum Random Tree.

Scaling limit of the UST on the complete graph

[Aldous (1993)]

Theorem (The CRT as scaling limit)

For a critical offspring law with variance $0<\sigma^{2}<\infty$, let T_{N} be the Bienaymé tree conditioned to have N nodes. Then

$$
\frac{T_{N}}{\sqrt{\sigma^{2} N}} \underset{N \rightarrow \infty}{G H w} \text { CRT }
$$

where CRT is the Continuum Random Tree.

Corollary
The UST on the complete graph \mathbb{K}_{m} with edge-lengths $1 / \sqrt{m}$ converges GH-weakly in law to the CRT.

CRT as limit of growing trees

(1) Let $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ be the times of a non-homogeneous Poisson point process with rate $r(t)=t$. In particular, $\mathbb{P}\left(C_{1}>x\right)=e^{-\frac{x^{2}}{2}}$ (Rayleigh distribution).

\sim The process that describes the distance to the root is the Rayleigh process.

CRT as limit of growing trees

(1) Let $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ be the times of a non-homogeneous Poisson point process with rate $r(t)=t$. In particular, $\mathbb{P}\left(C_{1}>x\right)=e^{-\frac{x^{2}}{2}}$ (Rayleigh distribution).
(2) Let $\mathcal{R}(1)$ be a line of length C_{1} from a root to leaf 1 .

\leadsto The process that describes the distance to the root is the Rayleigh process.

CRT as limit of growing trees

(1) Let $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ be the times of a non-homogeneous Poisson point process with rate $r(t)=t$. In particular, $\mathbb{P}\left(C_{1}>x\right)=e^{-\frac{x^{2}}{2}}$ (Rayleigh distribution).
(2) Let $\mathcal{R}(1)$ be a line of length C_{1} from a root to leaf 1 .
(3) Inductively, obtain $\mathcal{R}(k+1)$ from $\mathcal{R}(k)$ by attaching an edge of length $C_{k+1}-C_{k}$ to a uniform random point of $\mathcal{R}(k)$ labeling a new leaf $k+1$.

\leadsto The process that describes the distance to the root is the Rayleigh process.

CRT as limit of growing trees

(1) Let $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ be the times of a non-homogeneous Poisson point process with rate $r(t)=t$. In particular, $\mathbb{P}\left(C_{1}>x\right)=e^{-\frac{x^{2}}{2}}$ (Rayleigh distribution).
(2) Let $\mathcal{R}(1)$ be a line of length C_{1} from a root to leaf 1 .
(3) Inductively, obtain $\mathcal{R}(k+1)$ from $\mathcal{R}(k)$ by attaching an edge of length $C_{k+1}-C_{k}$ to a uniform random point of $\mathcal{R}(k)$ labeling a new leaf $k+1$.

\leadsto The process that describes the distance to the root is the Rayleigh process.

CRT as limit of growing trees

(1) Let $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ be the times of a non-homogeneous Poisson point process with rate $r(t)=t$. In particular, $\mathbb{P}\left(C_{1}>x\right)=e^{-\frac{x^{2}}{2}}$ (Rayleigh distribution).
(2) Let $\mathcal{R}(1)$ be a line of length C_{1} from a root to leaf 1 .
(3) Inductively, obtain $\mathcal{R}(k+1)$ from $\mathcal{R}(k)$ by attaching an edge of length $C_{k+1}-C_{k}$ to a uniform random point of $\mathcal{R}(k)$ labeling a new leaf $k+1$.

\leadsto The process that describes the distance to the root is the Rayleigh process.

The CRT as scaling limit of the UST on tori

$$
\mathbb{Z}_{N}^{d}:=\left.\{1,2, \ldots, N\}^{d}\right|_{\bmod N}
$$

- [Benjamini \& Kozma (2003)] d ≥ 5

$$
\mathbb{E}_{\pi_{N}}\left[\# \operatorname{LE}\left(W\left[0, T_{0}\right]\right)\right]=\mathcal{O}\left(N^{\frac{d}{2}}\right)
$$

- [Peres \& Revelle (ArXiv2005)] $d \geq 5$. For all $x>0$,

$$
\mathbb{P}_{\pi_{N}}\left(\# \operatorname{LE}\left(W\left[0, T_{0}\right]\right)>x \beta(d) N^{\frac{d}{2}}\right) \underset{N \rightarrow \infty}{\longrightarrow} e^{-\frac{x^{2}}{2}} .
$$

with $\beta(d):=\frac{\gamma(d)}{\sqrt{\alpha(d)}}$ where

$$
\begin{aligned}
& \left.\gamma(d)=\mathbb{P}\left(\operatorname{LE}\left(\hat{W}^{1}[0, \infty)\right)\right) \cap \hat{W}^{2}([1, \infty))=\emptyset\right) \\
& \left.\alpha(d)=\mathbb{P}\left(\operatorname{LE}\left(\hat{W}^{1}[0, \infty)\right) \cup \operatorname{LE}\left(\hat{W}^{2}[0, \infty)\right) \cap \hat{W}^{3}[1, \infty)\right)=\emptyset\right)
\end{aligned}
$$

with \hat{W}^{1}, \hat{W}^{2} and \hat{W}^{3} independent RW on \mathbb{Z}^{d} starting in the origin.

Scaling limit of UST on the high dimensional torus

If \mathbb{K}_{m} complete graph with m vertices, then $\frac{1}{\sqrt{m}} \operatorname{UST}\left(K_{m}\right) \underset{m \rightarrow \infty}{\Longrightarrow}$ CRT

$$
\mathbb{Z}_{N}^{d}:=\left.\{1,2, \ldots, N\}^{d}\right|_{\bmod N}
$$

(1) [Peres \& Revelle (ArXiv2005); $d \geq 5]$ There is $\beta(d) \in(0, \infty)$ s.t.

$$
\frac{1}{N^{\frac{d}{2}}} \mathrm{UST}\left(\mathbb{Z}_{N}^{d}\right) \underset{N \rightarrow \infty}{\mathrm{Gw}} \beta(d) \cdot \mathrm{CRT}
$$

(2) [Schweinsberg (2009); $\boldsymbol{d}=4]$ There exists a sequence $\left(\beta_{N}\right)$ bounded away from zero and infinity such that

$$
\frac{1}{\beta_{N} N^{2}(\log N)^{\frac{1}{6}}} \text { UST }\left(\mathbb{Z}_{N}^{4}\right) \underset{N \rightarrow \infty}{\mathrm{Gw}} \text { CRT. }
$$

(3) [Archer, Nachmias \& Shalev (ArXiv2021); $d \geq 5$]

$$
\frac{1}{N^{\frac{d}{2}}} \mathrm{UST}\left(\mathbb{Z}_{N}^{d}\right) \underset{N \rightarrow \infty}{\mathrm{GHw}} \beta(d) \cdot \mathrm{CRT}
$$

What is special about high dimensional tori?

- ($d \geq 3$) [Spitzer (unpublished), Cox (1986)] Let $W=\left(W_{n}\right)_{n \in \mathbb{N}_{0}}$ be the RW on $\mathbb{Z}_{N}^{d}, d \geq 3$. Then

$$
\mathcal{L}_{(1,0, \ldots, 0)}\left(N^{-d} T_{(0,0, \ldots, 0)}\right) \underset{N \rightarrow \infty}{\Longrightarrow}(1-\gamma(d)) \delta_{0}+\gamma(d) \mathcal{E} \times p(1)
$$

with $\gamma(d)$ the escape probability on \mathbb{Z}_{N}^{d}. Moreover,

$$
\mathcal{L}_{\pi_{N}}\left(N^{-d} T_{\underline{0}}\right) \underset{N \rightarrow \infty}{\Longrightarrow} \mathcal{E} \times p\left((\gamma(d))^{-1}\right)
$$

- $(d \geq 5)$ There is $\mathcal{O}\left(N^{2} \log N\right) \ll\left(s_{N}\right) \ll \mathcal{O}\left(N^{\frac{d}{2}}\right)$ with $\mathcal{L}_{v}\left(W\left(s_{N}\right)\right)=\pi_{N}, v \in \mathbb{N}$.
\leadsto Separation (up to time $T N^{\frac{d}{2}}, T>0$ fixed, w.o.p.) of short loops (lengths less than s_{N}) and long loops (length of order $\mathcal{O}\left(N^{\frac{d}{2}}\right)$).

The scaling factor, $\beta(d), d \geq 5$

There is a time scale $\mathcal{O}\left(N^{2} \log N\right) \ll\left(s_{N}\right) \ll \mathcal{O}\left(N^{\frac{d}{2}}\right)$ with $\mathcal{L}_{v}\left(W\left(s_{N}\right)\right)=\pi_{N}, v \in \mathbb{N}$.

- $\operatorname{LE}\left(W\left[0, T_{v}\right]\right)$ decomposes into path segments segregated by the times at which a long loop occurs.

- Segments become asymptotically i.i.d. once you cut off pieces of length s_{N} in the beginning and in the end.
\leadsto Want to know the number of segments and their length.
- Concentration of length If $s_{N} \ll r_{N} \ll N^{\frac{d}{2}}$ then $\mathbb{E}_{\pi_{N}}\left[\# \mathrm{LE}\left(\left[0, r_{N}\right]\right)\right] \sim \gamma_{N}(d) r_{N}$ with

$$
\gamma_{N}(d) \underset{N \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\operatorname{LE}\left(\hat{W}^{1}([0, \infty))\right) \cap \hat{W}^{2}([1, \infty))=\emptyset\right)
$$

where \hat{W}^{1}, \hat{W}^{2} independent RW on \mathbb{Z}^{d} starting in the origin.

A dynamic view on LERW

\leadsto Scaling limit of Aldous-Broder chain as graph size goes to ∞ ?

\mathbb{K}_{m} complete graph of size m

Let $W=(W(n))_{n \in \mathbb{N}_{0}}$ the symmetric RW on \mathbb{K}_{m}, and

$$
Z(k):=\# \operatorname{LE}(W([0, k])), \quad k \in \mathbb{N}_{0} .
$$

Then $Z=(Z(k))_{k \in \mathbb{N}_{0}}$ is the \mathbb{N}-valued Markov chain with

$$
\mathbb{P}(Z(k+1)=b \mid Z(k)=a)=\left\{\begin{array}{cl}
\frac{1}{m-1}, & \text { if } b \in\{1, \ldots, a-1\} \\
\frac{m-1-a}{m-1}, & \text { if } b=a+1, \\
0, & \text { else. }
\end{array}\right.
$$

\leadsto Does this dynamics has a scaling limit?

Convergence to the Rayleigh process

Definition (Rayleigh process)

$R=(R(t))_{t \geq 0}$ is a $[0, \infty)$-valued piecewise deterministic Markov jump process such that

- with rate $R(t-)$ at time t, the Rayleigh process jumps

$$
R(t-) \mapsto U \cdot R(t-),
$$

with U uniformly distributed on $[0,1]$,

- and in between jumps, R increases linearly at unit speed.

$$
\left.\left(\frac{1}{\sqrt{m}} \# \mathrm{LE}^{\mathbb{K}_{m}}(W([0, \sqrt{m} t]])\right)\right)_{t \geq 0} \underset{m \rightarrow \infty}{\Longrightarrow}(R(t))_{t \geq 0},
$$

weakly in Skorokhod space.
\leadsto Rayleigh distribution is invariant; connection to CRT

Candidate for a scaling limit: Root growth with regrafting

[Evans, Pitman \& Winter (2006)]

Definition (RGRG)

RGRG, is a piecewise deterministic jump process $R=(R(t))_{t \geq 0}$ s.t. given its current state (T, d, ϱ):

Regrafting. For each $v \in T$, a cut point occurs at unit rate $\mathrm{d} v$. As a result $T \backslash\{v\}$ is decomposed into two subtree components; one of them containing the root. We reconnect by identifying v with ϱ.

Root growth. In between two jumps the root grows away from the tree at unit speed.
\leadsto The height of a tagged point follows a Rayleigh process.

Root growth with regrafting: Construction

[Evans, Pitman \& Winter (2006)]

Remarks.

(1) RGRG can be constructed using the points of a Poisson PP П on

$$
\Delta_{+}^{2}:=\left\{(x, y) \in \mathbb{R}_{+}^{2}: x \in \mathbb{R}_{+}, y \in(0, x]\right\} \subseteq \mathbb{R}_{+}^{2}
$$

with intensity measure $\mathrm{d} x \mathrm{~d} y$.
For that we order the points of Π w.r.t. increasing first coordinates

$$
\left(\tau_{1}(\Pi), p_{1}(\Pi)\right),\left(\tau_{2}(\pi), p_{2}(\Pi)\right),\left(\tau_{3}(\Pi), p_{3}(\Pi)\right), \ldots
$$

and use

- $\tau_{n}(\Pi)$ for the time of the $n^{\text {th }}$ regraft event, and
- $p_{n}(\Pi)$ for the cut point associated with the $n^{\text {th }}$ regraft event.
(2) $\operatorname{RGRG}(t) \underset{t \rightarrow \infty}{\Longrightarrow} C R T$.
(3) The RGRG is also well-defined if started in an arbitrary rooted tree (possibly of infinite total length).
(4) In particular, the RGRG has the CRT as its invariant distribution.

Scaling limit of the AB-chain on the complete graph

[Evans, Pitman \& W. (2006)]

Theorem

If $\left(X^{m}\right)_{m \in \mathbb{N}}$ is a sequence of $A B$ chains on the complete graph \mathbb{K}_{m} and such that $\left(\frac{1}{\sqrt{m}} X^{m}(0)\right)_{t \geq 0} \underset{m \rightarrow \infty}{\Longrightarrow}$ CRT, then

$$
\left(\frac{1}{\sqrt{m}} X^{m}(\sqrt{m} t)\right)_{t \geq 0} \underset{N \rightarrow \infty}{\stackrel{G H}{\Longrightarrow}}(R G R G(t))_{t \geq 0}
$$

where the $R G R G$ starts in the CRT.

A dynamic view in LERW: The high dimensional torus

$$
\begin{aligned}
& \gamma(d)=\mathbb{P}\left(\operatorname{LE}\left(\hat{W}^{1}([0, \infty))\right) \cap \hat{W}^{2}([1, \infty))=\emptyset\right) \\
& \alpha(d)=\mathbb{P}\left(\left(\operatorname{LE}\left(\hat{W}^{1}([0, \infty))\right) \cup \operatorname{LE}\left(\hat{W}^{2}([0, \infty))\right) \cap \hat{W}^{3}([1, \infty))=\emptyset\right)\right.
\end{aligned}
$$

[SCHWEINSBERG (2008)]

Theorem

If $R=(R(t))_{t \geq 0}$ is the Rayleigh process with $R(0)=0$ and W is the $R W$ on $\mathbb{Z}_{N}^{d}, d \geq 5$. Let for all $t \geq 0$,

$$
Z^{N}(t):=\frac{1}{\beta(d) N^{\frac{d}{2}}} \# \mathrm{LE}\left(W\left(\left[0,\left\lfloor(\alpha(d))^{-\frac{1}{2}} N^{\frac{d}{2}} t\right]\right]\right)\right)
$$

Then $Z^{N}=\left(Z^{N}(t)\right)_{t \geq 0}$ converges to $R=(R(t))_{t \geq 0}$ in Skorokhod topology.
\leadsto Can this be extended to a tree-valued dynamics?

Scaling the AB-chain on the torus: Conjecture

Conjecture (Angtuncio-Hernández, Berzunza-Ojeda \& W.)

If $\left(X^{N}\right)_{N \in \mathbb{N}}$ is a sequence of $A B$ chains on $\mathbb{Z}_{N}^{d}, d \geq 5$, starting in the $\operatorname{UST}\left(\mathbb{Z}^{d}\right)$ then

$$
\left(\frac{1}{N^{\frac{d}{2}}} X^{N}\left(N^{\frac{d}{2}} t\right)\right)_{t \geq 0} \xlongequal[N \rightarrow \infty]{G H}\left(\beta(d) \cdot R G R G\left((\alpha(d))^{\frac{1}{2}} t\right)\right)_{t \geq 0},
$$

where $\operatorname{RGRG}(0) \stackrel{(d)}{=}$ CRT.

Scaling the AB-chain on the torus: main result

Trimming operator. $\Upsilon_{\eta}((T, d, \varrho)):=\left(T_{\eta}, d_{\eta}, \varrho\right), \eta>0$, defined as with

$$
T_{\eta}:=\{y \in T: \exists z \in T \text { with } y \in[\varrho, z], d(y, z) \geq \eta\} \cup\{\varrho\} .
$$

Our conjecture implies that for all $\eta>0$,

$$
\left(\Upsilon_{\eta}\left(N^{-\frac{d}{2}} X^{N}\left(N^{\frac{d}{2}} t\right)\right)\right)_{t \geq 0} \underset{N \rightarrow \infty}{\stackrel{G H}{\Longrightarrow}}\left(\Upsilon_{\eta}\left(\beta(d) \cdot \operatorname{RGRG}\left((\alpha(d))^{\frac{1}{2}} t\right)\right)\right)_{t \geq 0} .
$$

\leadsto If the conjecture holds, it also holds if $X^{N}(0)=(\{\varrho\}, \varrho)$ and RGRG(0) is the trivial rooted tree.

Theorem (Angtuncio-Hernández, Berzunza-Ojeda \& W.)

If $\left(X^{N}\right)_{N \in \mathbb{N}}$ is a sequence of $A B$ chains on $\mathbb{Z}_{N}^{d}, d \geq 5$, starting in the trivial tree then

$$
\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)_{t \geq 0} \underset{N \rightarrow \infty}{\stackrel{G H}{G}}\left(\beta(d) \cdot R G R G\left((\alpha(d))^{\frac{1}{2}} t\right)\right)_{t \geq 0},
$$

where the $R G R G$ also starts in the trivial rooted tree.

Proof Strategy

Theorem (Angtuncio-Hernández, Berzunza-Ojeda \& W.)
If $\left(X^{N}\right)_{N \in \mathbb{N}}$ is a sequence of $A B$ chains on $\mathbb{Z}_{N}^{d}, d \geq 5$, starting in the trivial tree then

$$
\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)_{t \geq 0} \underset{N \rightarrow \infty}{\stackrel{G H}{\Longrightarrow}}\left(\beta(d) \cdot R G R G\left((\alpha(d))^{\frac{1}{2}} t\right)\right)_{t \geq 0},
$$

where the $R G R G$ also starts in the trivial rooted tree.

General strategy. Couple the RW driving the AB-chain and the Poisson PP

 driving the RGRG such that for each $T>0$ w.h.p.,$$
d_{\text {Skorohod }}\left(\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)_{t \geq 0},\left(\beta(d) \cdot \operatorname{RGRG}\left((\alpha(d))^{\frac{1}{2}} t\right)\right)_{t \in[0, T]}\right) \underset{N \rightarrow \infty}{ } 0
$$

Proof ideas: short loops don't change much

Choose a sequence $\left(s_{N}\right) \uparrow \infty$ such that $N^{2}(\log N)^{2} \ll s_{N} \ll N^{\frac{d}{2}}$.

- Note that for all $t \geq 0$,

$$
d_{\mathrm{H}}\left(\Upsilon_{s_{N} N^{-\frac{d}{2}}}\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right), N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right) \leq s_{N} N^{-\frac{d}{2}} \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

and that

$$
\Upsilon_{s_{N} N^{-\frac{d}{2}}}\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)=N^{-\frac{d}{2}} \Upsilon_{s_{N}}\left(X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right) .
$$

\sim It is enough to show that

$$
\left(N^{-\frac{d}{2}} \Upsilon_{s_{N}}\left(N^{-\frac{d}{2}} X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)\right)_{t \geq 0} \underset{N \rightarrow \infty}{G H}\left(\beta(d) \cdot \operatorname{RGRG}\left((\alpha(d))^{\frac{1}{2}} t\right)\right)_{t \geq 0}
$$

- Fix $T>0$. With overwelming probability, for all $t \in[0, T]$,

$$
\Upsilon_{s_{N}}\left(X^{N}\left(\left\lfloor N^{\frac{d}{2}} t\right\rfloor\right)\right)=\operatorname{LE}_{s_{N}}(W[0, t])
$$

where $\operatorname{LE}_{s_{N}}(\gamma)$ denotes the local loop erasure of γ which only erases short loops of length $\leq s_{N}$.

Illustrating the role of short and long loops

Proof ideas: long loops are rare

Choose sequences $\left(s_{N}\right) \uparrow \infty$ and $\left(r_{N}\right) \uparrow \infty$ such that

$$
\mathcal{O}\left(N^{2} \log N\right) \ll s_{N} \ll r_{N} \ll N^{\frac{d}{2}}
$$

Let \hat{W}^{1} and \hat{W}^{2} be two independent $R W s$ on \mathbb{Z}_{N}^{d}, and put

$$
\alpha_{N}(d):=\mathbb{P}_{\pi_{N} \times \pi_{N}}\left(\operatorname{LE}\left(\hat{W}^{1}\left(\left[0, r_{N}\right]\right)\right) \cap \text { Range }\left(\hat{W}^{2}\left(\left[1, r_{N}\right]\right)\right) \neq \emptyset\right)
$$

Lemma (Peres \& Revelle (2004ArXiv))

$$
\begin{aligned}
\alpha(d) & :=\lim _{N \rightarrow \infty} \frac{N^{d}}{\left(r_{N}\right)^{2}} \alpha_{N}(d) \\
& =\mathbb{P}\left(\left(\operatorname{LE}\left(\left(\hat{W}^{1}[0, \infty)\right) \cup \operatorname{LE}\left(\hat{W}^{2}[0, \infty)\right) \cap \hat{W}^{3}[1, \infty)=\emptyset\right),\right.\right.
\end{aligned}
$$

with \hat{W}^{1}, \hat{W}^{2} and \hat{W}^{3} independent $R W s$ on \mathbb{Z}^{d} starting in the origin.

Proof ideas: approximation and coupling

(1) Decompose the RW-path $W\left[0, T N^{\frac{d}{2}}\right]$ into path segments of length $\sim r_{N}$:

$$
A_{j}^{s_{N}, r_{N}}:=W\left[\left\{(j-1) r_{N}+s_{N}, \ldots, j r_{N}-s_{N}\right\}\right] ; \quad j=1, \ldots,\left\lfloor\frac{T N^{\frac{d}{2}}}{r_{N}}\right\rfloor,
$$

and refer to (i, j) as an $\left(W,\left(s_{N}, r_{N}\right)\right)$-regraft index if

$$
\operatorname{LE}\left(A_{j}^{s_{N}, r_{N}}\right) \cap \operatorname{Range}\left(A_{i}^{s_{N}, r_{N}}\right) \neq \emptyset
$$

(2) Discretize the Poisson PP as follows:

$$
\left\{\left(\left\lfloor x\left(\alpha_{N}(d)\right)^{-\frac{1}{2}}\right\rfloor \alpha_{N}(d)^{\frac{1}{2}},\left\lfloor x\left(\alpha_{N}(d)\right)^{-\frac{1}{2}}\right\rfloor \alpha_{N}(d)^{\frac{1}{2}}\right) ;(x, y) \in \Pi\right\}
$$

and refer to (i, j) as an $\left(\Pi, \alpha_{N}(d)\right)$-regraft index if

$$
\Pi\left(\left[i \alpha_{N}(d)^{\frac{1}{2}},(i+1) \alpha_{N}(d)^{\frac{1}{2}}\right) \times\left[j \alpha_{N}(d)^{\frac{1}{2}},(j+1) \alpha_{N}(d)^{\frac{1}{2}}\right)\right) \geq 1
$$

(3) Show that we can couple W and Π such that w.o.p. for all $j \leq i \leq \frac{T N^{\frac{d}{2}}}{r_{N}}$, (i, j) as an $\left(W,\left(s_{N}, r_{N}\right)\right)$-regraft index iff (i, j) as an $\left(\Pi, \alpha_{N}(d)\right)$-regraft index.
\leadsto Consequently, for all $T>0$ w.o.p. up to time $T N^{\frac{d}{2}}$,

- branching events happen at the same time, and
- yield trees of the same tree shape, while in between two regraft events we rely on [SCHWEINSBERG (2008)].

Merci de votre attention

