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Model

Let (Zm)m≥0 be a Bienaymé-Galton-Watson process with immigra-
tion with reproduction law µ and immigration law ν, both on N0.
Assume µ has a generating function given (for |s| ≤ 1) by

f(s) := s+ c(1− s)1+αL(1− s), (1)

and the immigration law ν has a generating function given (for |s| ≤
1) by

h(s) := 1− d(1− s)αG(1− s), (2)

where c, d ≥ 0 and α ∈ (0, 1] and L(x) ∼ G(x) for x → 0 and L is
slowly varying at 0.
Define a scaled process

X
(n)
t :=

1

bn
Z[nt] with bαn ∼ nL(1/bn) as n → ∞. (3)

By Kawazu and Watanabe 1971 the limit of (3) exists and it is a
CBI-process (Xt)t≥0 with the Laplace transform given by

Ex0
e−λXt = (1 + αcλαt)

− d
αc exp

(
−λx0

(1 + αcλαt)
1/α

)
. (4)

δ-assumption
Let

δ :=
d

αc
.

In Foucart and Bravo 2014 the zero-level set of the scaling limit of X, i.e.
of a CBI-process, was characterised, in particular,

• when δ < 1 the level 0 is recurrent;

• when δ ≥ 1 it is polar.

Convergence of local time at 0

Let (L)t≥0 be the local time of X at 0 and for t ≥ 0 let the “naïve” local
time of X(n) at 0 be

L
(n)
t := #

{
j ≤ [nt] : X

(n)
j/n = 0

}
.

Theorem 1. Assume that δ ∈ (0, 1). Then there exists a sequence
{an}n∈N, such that

(X(n), L(n)/an)
w→ (X,L) as n → ∞.

The sequence an satisfies

a1−δ
n ∼ nL∗(an) as n → ∞,

for a slowly varying (at infinity) function L∗.

Simulation
Consider the case α < 1.

Claim 1. Let ηd,Gα be an α-stable random variable such that

E exp(−ληd,Gα ) ∼ 1− dλαG(λ), λ → 0+,

then the immigration

I
d
= Id,G := Pois(ηd,Gα ),

and upon setting I ′ = Ic(1+α),L1 the regeneration

R
d
= Be(I ′)(I ′ + 1),

where L1 is such that L1(x) ∼ L(x) when x → 0+.

Yaglom limit
Let (Wm)m≥0 be an excursion of Z above 0, that is assume that m∗ is
such that Z(m∗ − 1) = 0 and Z(m∗) > 0, then (Wm)m≥0 is defined as

W (0) = Z(m∗) and W (m+ 1) =

{
Z(m∗ +m+ 1), if W (m) > 0,

0, otherwise.

The length of excursion W is defined as ρ := inf {m > 0 : W (m) = 0}.
Note that P(ρ > n) = P(W (n) > 0).

Theorem 2. Let L∗ be a slowly varying (at infinity) function. For δ > 0
it holds that

P(Zn = 0) ∼ n−δL∗(n) as n → ∞. (5)

Theorem 3. Let L∗ be a slowly varying (at infinity) function. For δ > 0
it holds that Eρ = ∞ and
for δ ≤ 1

P(ρ > n) ∼ L∗(n)

n1−δ
as n → ∞.

for δ > 1
lim
n→∞

P(ρ > n) = P(ρ = ∞) > 0.

Theorem 4. For λ ≥ 0 and δ > 0

lim
n→∞

E

(
exp

(
−λ

W (n)

bn

) ∣∣∣∣∣W (n) > 0

)
=

1

(1 + αcλα)
δ∨1

. (6)

Reflection on the infinite variance{
Finite variance of reproduction

}
=
{
α = 1 and L(0) < ∞

}
.

From Zolotarev 1957-Slack 1968 it is readily seen that for a BGW without
immigration which satisfies (1), denote it Z̃, it holds that

lim
n→∞

E

(
exp

(
−λ

Z̃(n)

bn

)∣∣∣∣∣Z̃(n) > 0

)
= 1−

(
αcλα

1 + αcλα

)1/α

.

Upon assuming the finite variance the known results are recovered, see
Yaglom 1947 and Vatutin 1977. Now both limit laws are exponential and
their Laplace transforms are 1

1+cλ .


