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Biological motivation Logistic growth

Biological motivation
Logistic growth

The standard assumption of indepen-
dence between individuals in a popula-
tion leads to exponential growth.

This assumption is often not realistic:
an individual’s lifetime and reproduc-
tive parameters usually depend on the
availability of a number of resources,
such as food, habitat, and breeding op-
portunities.

A population can grow only until it
reaches the maximum population size
a particular habitat can support, named
the carrying capacity.

Exponential growth
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Biological motivation Reindeers at Saint Matthew Island

Reindeers at Saint Matthew Island

In 1944, 29 reindeer were introduced
to St. Matthew Island by the United
States Coast Guard.

The Coast Guard abandoned the is-
land a few years later, leaving the
reindeer.

The reindeer population rose to
about 6,000 by 1963.

In the next two years, the number
declined to 42 animals (41 females
and one male).

By the 1980s, the reindeer popula-
tion had died out.

Fig: Source:

https://www.adn.com/features/article/

what-wiped-out-st-matthew-islands-reindeer/

2010/01/17/
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Biological motivation The black robin population

The black robin population

The endangered Chatham Island black robin population (New Zealand) was
saved from the brink of extinction in the early 1980s.

The Chatham Islands 

Picture: Melanie Massaro 
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Biological motivation The black robin population

The black robin population

The current growth of the
population does not appear to
be exponential.

The population has not yet
reached the carrying capacity
of the island.

A low estimated value of the
carrying capacity would high-
light the need to find further
appropriate habitat.
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Fig: Number of adult females between 1972
and 1998.

Aim

To estimate the carrying capacity of the black robin population.
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Biological motivation The black robin population

Outline
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The probability model

Population-size-dependent branching processes (PSDBPs)

ξ(z) : the offspring distribution at population size z , z ≥ 1

Zn : the population size at generation n,

Zn+1 =
Zn∑
i=1

ξn,i (Zn), n ≥ 0

where conditionally on Zn, the random variables ξn,i (Zn) are i.i.d.

m(z) := E[ξ(z)] the offspring mean at population size z

σ2(z) := Var[ξ(z)] the offspring variance at population size z

The conditional mean and variance of the process are given by

E[Zn |Zn−1] = Zn−1 m(Zn−1), Var[Zn |Zn−1] = Zn−1 σ
2(Zn−1)
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The probability model

Mathematical carrying capacity

The carrying capacity K of a population in a certain environment is
defined such that

m(z) > 1, if z < K , and m(z) < 1, if z > K .
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Fig: Mean offspring function m(z) of a PSDBP with carrying capacity K = 60.
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The probability model

Almost sure extinction!

Carrying capacity + random nature of the process = a.s. extinction.
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Fig: Portion of a trajectory of a PSDBP with carrying capacity K = 60.
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The probability model

A PSDBP model for the black robin population

Between generations n and n + 1, if there are z female birds,

A female bird makes a successful attempt to reproduce with probability
r := r(z ,K , v), where

r(z ,K , v) =
v K

(µ− 1)z + K
(Beverton-Holt model).

r(z ,K , v) = v

(
1

µ

)z/K

(Ricker model).

with µ = 5pv/d .

If reproduction is successful, the mother produces daughters according
to a binomial distribution with n = 5 and p = 0.1988.

The mother survives to the next generation with probability 1 − d =
0.6861.
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Estimation
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Estimation

Parametric estimation in PSDBPs

Given that our goal is to estimate the carrying capacity, we will need a
parametric PSDBP model.

We assume that the offspring distribution belongs to some parametric
family, that is,

pk(z) := P[ξ(z) = k] = pk(z ,θ0),

for some θ0 ∈ int(Θ) ⊆ Rb. Then, m(z) = m(z ,θ0).

In the black robin population example the parameter is θ0 = (K , v).

We aim at finding C -consistent estimators for θ0 based on the observation
of the population sizes Z0,Z1,Z2, . . . ,Zn.
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Estimation MLE of the offspring mean

A first approach: MLE of the offspring mean

First aim: to find a good estimator for the offspring means m(z) based
on the observation of the population sizes Z0,Z1,Z2, . . . ,Zn in a general
framework.

MLE for the offspring mean m(z) at population size z , based on the
observation of the population sizes Z0,Z1, . . . ,Zn:

m̂n(z) :=

∑n
i=1 Zi 1{Zi−1=z}

z
∑n

i=1 1{Zi−1=z}
.
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Estimation MLE of the offspring mean

A first approach: MLE of the offspring mean

Fig: Example with carrying capacity K = 20

m̂n(z) :=

∑n
i=1 Zi 1{Zi−1=z}

z
∑n

i=1 1{Zi−1=z}
Example:

m̂200(10) = (18 + 14 + 16 + 20 + 10 + 18 + 16 + 14 + 12)/(10 ·9) = 138/90 = 1.53
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Estimation MLE of the offspring mean

MLE of the offspring mean: asymptotic properties

Fig: Histogram of m̂n(z) for z = 10 and n = 2000, based on 5000 simulations, K = 20.

Real value of m(z) = 1.3333; Empirical mean of m̂n(z) = 1.3349

Conditional on Zn > 0, m̂n(z)→ m↑(z) = 1.3334 6= m(z) as n→∞
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Estimation MLE of the offspring mean

How do m(z) and m↑(z) differ?
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Fig: Comparison between the functions z 7→ m(z) (red line) and z 7→ m↑(z) (blue line). Left:
K = 20. Right: K = 8.
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Estimation MLE of the offspring mean

Conditioning on Zn > 0 — The Q-process

Q : the sub-stochastic transition probability matrix of {Zn} restricted
to the transient states {1, 2, . . .}

We set the following conditions:
(A1) The matrix Q is irreducible
(A2) lim supz→∞ m(z) < 1
(A3) For each ν ∈ N, supz∈N E [ξ01(z)ν ] <∞.

Under these conditions,

P[Zn → 0] = 1 (almost sure extinction)

Qn ∼ ρnvu>, where ρ := limn→∞(Qn)
1/n
ij , and u, v > 0 such that

u>Q = ρu>, Qv = ρv , u>1 = 1, and u>v = 1.
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Estimation MLE of the offspring mean

Conditioning on Zn > 0 — The Q-process

For n fixed: the process {Z`}0≤`≤n conditioned on Zn > 0 is a
time-inhomogeneous Markov chain:

P[Z
(n)
` = j |Z (n)

`−1 = i ] := P[Z` = j |Z`−1 = i , Zn > 0]

= Qij

e>j Q
n−`1

e>i Qn−`+11
.

As n→∞:

P[Z ↑` = j |Z ↑`−1 = i ] := lim
n→∞

P[Z` = j |Z`−1 = i , Zn > 0]

= lim
n→∞

Qij

e>j ρ
n−` v

e>i ρn−`+1 v

= Qij
vj
ρvi

.

{Z ↑` }`≥0 is a positive recurrent time-homogeneous Markov chain
called the Q-process
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Estimation MLE of the offspring mean

The Q-process and ‘Q-consistency’ of the MLE

m(z) := E[ξ(z)] the mean offspring at population size z

m̂n(z) :=

∑n
i=1 Zi 1{Zi−1=z}

z
∑n

i=1 1{Zi−1=z}

In {Zn}: m(z) = z−1
∑

j≥1 j Qzj

In {Z ↑n }: m↑(z) = z−1
∑

j≥1 j Q
↑
zj with Q↑ij := Qij

vj
ρvi

Theorem (Braunsteins, Hautphenne, M., 2022a)

Under (A1)–(A3), for any z ∈ N, initial state i , and ε > 0, m̂n(z) satisfies

lim
n→∞

Pi [|m̂n(z)−m↑(z)| > ε |Zn > 0] = 0 ‘Q-consistency’
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Estimation MLE of the offspring mean

Asymptotic normality of the MLE

(uivi )i≥1 : stationary distribution of {Z ↑n }

σ2↑(z) =

∑∞
k=1 k

2Q↑zk
z2

− (m↑(z))2

Theorem (Braunsteins, Hautphenne, M., 2022a)

Under (A1)–(A3), for any z ∈ N, initial state i , and x ∈ R, m̂n(z) satisfies

lim
n→∞

Pi [{n/γ(z)}1/2
(
m̂n(z)−m↑(z)

)
≤ x |Zn > 0] = Φ(x),

where Φ(x) is the standard normal distribution, and

γ(z) :=
σ2↑(z)

uzvz
.

Proof approach: coupling techniques and martingale CLT.
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Estimation MLE of the offspring mean

Asymptotic normality of the MLE

Fig: Histogram of m̂n(z) for z = 10 and n = 2000, based on 5000 simulations, K = 20.
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Estimation MLE of the offspring mean

‘Q-consistency’ versus C -consistency

‘Q-consistency’: for any ε > 0,

lim
n→∞

P[|m̂n(z)−m↑(z)| > ε |Zn > 0] = 0

C -consistency: for any ε > 0,

lim
n→∞

P[|m̃n(z)−m(z)| > ε |Zn > 0] = 0

The estimator m̂n(z) is Q-consistent but not C -consistent

In our PSDBP, m↑(z) ≈ m(z) because {Z ↑` } ≈ {Z`}.

The properties of the estimator m̂n(z) are the key to obtain
C -consistent estimators for the parameter θ0.
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Estimation Weighted least squares estimation

C -consistent estimators for θ0

We propose the following weighted least squares estimator of the

θ̂n = arg min
θ∈Θ

∞∑
z=1

ŵn(z)
[
m̂n(z)−m↑(z ,θ)

]2
,

where the weights {ŵn(z)}z≥1 are computed from the observations
Z0,Z1, . . . ,Zn, and are assumed to form an empirical distribution such that
for any z , i ≥ 1 and ε > 0,

lim
n→∞

Pi [|ŵn(z)− wz | > ε |Zn > 0] = 0,

for some limiting distribution {wz := wz(θ0)}z≥1.
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Estimation Weighted least squares estimation

C -consistent estimators for θ0

Under additional regularity assumptions on the parametric family

FΘ = {m↑(z ,θ) : θ ∈ Θ, z ∈ N},

we proved that θ̂n is C -consistent and asymptotically normal.

Theorem (Braunsteins, Hautphenne, M., 2022b)

For any initial state i , and ε > 0, θ̂n satisfies

lim
n→∞

Pi

[∥∥θ̂n − θ0

∥∥ > ε|Zn > 0
]

= 0 C -consistency.
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Estimation Weighted least squares estimation

C -consistent estimators for θ0

Theorem (Braunsteins, Hautphenne, M., 2022b)

For any initial state i , and for any x = (x1, . . . , xb) ∈ Rb,

lim
n→∞

Pi

[√
n
(
θ̂n − θ0

)
∈ (−∞, x1]× . . .× (−∞, xb] |Zn > 0

]
= Ψβ(θ0)(x),

where Ψβ(θ0)(·) is the distribution function of a b-dimensional normal r.v. with
mean vector 0 and positive semi-definite covariance matrix

β(θ0) := η(θ0)−1ζ(θ0)η(θ0)−1,

where η(θ0) and ζ(θ0) are the b-dimensional matrices given by

η(θ0) = 2
∞∑
z=1

wz (θ0)∇m↑(z ,θ0)∇m↑(z ,θ0)>,

ζ(θ0) = 4
∞∑
z=1

wz (θ0)2γ(z ,θ0)∇m↑(z ,θ0)∇m↑(z ,θ0)>,

with γ(z ,θ0) = σ2↑(z ,θ0)/(uz(θ0)vz(θ0)).
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Estimation Weighted least squares estimation

Weight functions

We consider different weight functions:

(1) The proportion of generations with population size z :

ŵ
(1)
n (z) =

∑n−1
i=0 1{Zi=z}

n
.

Lemma (Braunsteins, Hautphenne, M., 2022b)

For any z ≥ 1 and ε > 0,

lim
n→∞

Pi

[∣∣∣ŵ (1)
n (z)− w

(1)
z

∣∣∣ > ε|Zn > 0
]

= 0,

where
w

(1)
z = uzvz .

Conditionally on Zn > 0, the weights ŵ
(1)
n (z) converge to the stationary

distribution of the Q-process.
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Estimation Weighted least squares estimation

Weight functions

(2) The proportion of individuals who are alive when the population size
is z :

ŵ
(2)
n (z) =

z
∑n−1

i=0 1{Zi=z}∑n−1
i=0 Zi

.

Lemma (Braunsteins, Hautphenne, M., 2022b)

For any z ≥ 1 and ε > 0,

lim
n→∞

Pi

[∣∣∣ŵ (2)
n (z)− w

(2)
z

∣∣∣ > ε|Zn > 0
]

= 0,

where
w

(2)
z =

z uzvz∑∞
k=1 kukvk

.

Conditionally on Zn > 0, the weights ŵ
(2)
n (z) converge to the size-biased

distribution of the stationary distribution of the Q-process.
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Estimation Weighted least squares estimation

Comparison with the classical least squares estimator

Classical least squares estimators:

θ̃
∗
n := arg min

θ∈Θ

n∑
k=1

wk {Zk − Zk−1 m(Zk−1,θ)}2 ,

where {wk} is an appropriately chosen weighting function.

Proposition (Braunsteins, Hautphenne, M., 2022b)

The least squares estimator θ̂n with weight {w (1)
z } or {w (2)

z } is equal to
the previous estimator modified such that m(·) is replaced by m↑(·),

θ̂
∗
n := arg min

θ∈Θ

n∑
k=1

wk

{
Zk − Zk−1 m

↑(Zk−1,θ)
}2
,

with respective weight w
(1)
k = Z−2

k−1 or w
(2)
k = Z−1

k−1.

Carmen Minuesa (UEx) Consistent estimation of PSDBPs Angers, 2023 28 / 45



Estimation Weighted least squares estimation

Comparison with the classical least squares estimator

Classical least squares estimators:

θ̃
∗
n := arg min

θ∈Θ

n∑
k=1

wk {Zk − Zk−1 m(Zk−1,θ)}2 ,

where {wk} is an appropriately chosen weighting function.

Proposition (Braunsteins, Hautphenne, M., 2022b)

The least squares estimator θ̂n with weight {w (1)
z } or {w (2)

z } is equal to
the previous estimator modified such that m(·) is replaced by m↑(·),

θ̂
∗
n := arg min

θ∈Θ

n∑
k=1

wk

{
Zk − Zk−1 m

↑(Zk−1,θ)
}2
,

with respective weight w
(1)
k = Z−2

k−1 or w
(2)
k = Z−1

k−1.

Carmen Minuesa (UEx) Consistent estimation of PSDBPs Angers, 2023 28 / 45



Examples

Outline

1 Biological motivation

2 The probability model

3 Estimation
MLE of the offspring mean
Weighted least squares estimation

Asymptotic properties
Weight functions

4 Examples
Estimation in the quasi-stationary phase
Estimation in the growth phase
Estimation in the black robin population

5 Conclusions and references

Carmen Minuesa (UEx) Consistent estimation of PSDBPs Angers, 2023 29 / 45



Examples Estimation in the quasi-stationary phase

Simulated example: estimation in the quasi-stationary
phase

We consider the PSDBP with a carrying capacity and binary fission
reproduction given by a modified BH model:

p2(z ,K ) =
vK

K + (2v − 1)z
, p0(z ,K ) = 1− p2(z ,K ), z ∈ {2i : i ∈ N}.

The offspring parameter is θ = (K , v) ∈ Θ = (0,∞)× (1/2, 1].

We fixed θ0 = (K0, v0) = (50, 0.70).

We simulated 2000 non-extinct trajectories, and we are interested in
estimating the parameters based on the observation of Z0,Z1, . . . ,Z2000.
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Examples Estimation in the quasi-stationary phase

Estimation in the quasi-stationary phase
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Fig: Left: marginal distribution of K , together with the empirical and theoretical marginal 95%
confidence intervals. Centre: marginal distribution of the estimator of v , together with the
empirical and theoretical marginal 95% confidence intervals. Right: confidence regions for levels
50%, 75%, 90%, 95%, 97.5%.
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Examples Estimation in the growth phase

Simulated example: estimation in the growth phase

We consider the PSDBP with a carrying capacity and binary fission
reproduction given by a modified BH model:

p2(z ,K ) =
vK

K + (2v − 1)z
, p0(z ,K ) = 1− p2(z ,K ), z ∈ {2i : i ∈ N}.

The offspring parameter is θ = (K , v) ∈ Θ = (0,∞)× (1/2, 1].

We fixed θ0 = (K0, v0) = (200, 0.75).

We simulated 1000 non-extinct trajectories, and we are interested in
estimating the parameters based on the observation of Z0,Z1, . . . ,Z12.

Carmen Minuesa (UEx) Consistent estimation of PSDBPs Angers, 2023 32 / 45



Examples Estimation in the growth phase

Estimation in the growth phase
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Fig: Left: empirical mean of the simulated paths. Right: empirical distribution of Z12, together
with the empirical mean (red line) and the carrying capacity (grey line).
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Examples Estimation in the growth phase

Simulated example: estimation in the growth phase

θ̂n = arg min
θ∈Θ

∞∑
z=1

ŵn(z)
{
m̂n(z)−m↑(z ,θ)

}2
(C -consistent)

θ̃
∗
n = arg min

θ∈Θ

∞∑
z=1

ŵn(z) {m̂n(z)−m(z ,θ)}2 (modified)

(1) ŵ
(1)
n (z) =

∑n−1
i=0 1{Zi=z}/n

(2) ŵ
(2)
n (z) = z

∑n−1
i=0 1{Zi=z}/(

∑n−1
i=0 Zi )

Table: Median of the 1000 estimates — θ0 = (K0, v0) = (200, 0.75)

C -consistent Modified

K̂∗n v̂∗n K̃∗n ṽ∗n

(1) 177.60010 0.77088 151.31210 0.79670

(2) 191.78720 0.76622 185.79590 0.77025
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Examples Estimation in the black robin population

Carrying capacity of the black robin population

Model K̂ v̂

Beverton-Holt 109.61 0.696
Ricker 95.64 0.679
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Fig: Number of adult females between 1972 and 1998, together with the mean population size
curve of the estimated BH and Ricker models.
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Conclusions and references

Conclusions

We obtained the MLEs of the offspring mean function of a PSDBP
based on the observation of the population sizes.

Focussing our attention on the study of PSDBPs whose extinction
is certain, we considered the sample of the population sizes and we
analysed the asymptotic properties of the MLE m̂n(z) for a population
size z fixed, establishing its Q-consistency and asymptotic normality.

In a parametric setting, we developed C -consistent estimators for the
offspring parameter θ0 of PSDBPs.

We applied our results to estimate the carrying capacity of the endan-
gered black robin population in the Chatham Islands.

The choice of weights and parametric model are still very important.
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Additional results

Our assumptions

(A1) If m↑(z ,θ1) = m↑(z ,θ2), for each z ∈ supp(w(θ0)), then θ1 = θ2

(A2) M = supθ∈Θ supz∈Nm↑(z ,θ) <∞.

(A3) For each ε > 0,
limn→∞ Pi [supz∈N |m̂n(z)−m↑(z ,θ0)| > ε|Zn > 0] = 0, for any initial
state i ∈ N.

(A4) The function m↑(z ,θ) is twice continuously differentiable with respect
to θ for each z ∈ N. Moreover, for each θ′ ∈ Θ, there exists a
compact set C such that θ′ ∈ int(C ):

1 M∗1 (θ′) = supθ∈C supz∈N
∥∥∇m↑(z ,θ)

∥∥
∞ <∞.

2 M∗2 (θ′) = supθ∈C supz∈N maxi,j=1,...,d

∣∣∣∂2m↑(z,θ)
∂θi∂θj

∣∣∣ <∞.
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Additional results

Ingredient for the proof of C -consistency

We use the following lemma:

Lemma

Let f : θ ∈ Θ 7→ [0,∞) be a continuous function with a unique minimum
at θ0 that satisfies f (θ0) = 0.

Let f̂n(θ) be a (random) measurable function of the random variables
Z0, . . . ,Zn for each θ ∈ Θ, s.t. for each ω ∈ Ω, f̂n(ω, ·) is a continuous
function on Θ.

If ∀ε > 0, lim
n→∞

P

[
sup
θ∈Θ
|f̂n(θ)− f (θ)| > ε|Zn > 0

]
= 0, (1)

then

1 limn→∞ P
[
∃ arg minθ∈Θ f̂n(θ)|Zn > 0

]
= 1.

2 ∀ε > 0, limn→∞ P
[∥∥ arg minθ∈Θ f̂n(θ)− θ0

∥∥ > ε|Zn > 0
]

= 0.
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Additional results

Idea of the proof of C -consistency

We apply the previous lemma with

f̂n(θ) =
∞∑
z=1

ŵn(z)
{
m̂n(z)−m↑(z ,θ)

}2

and

f (θ) =
∞∑
z=1

wz(θ0)
{
m↑(z ,θ0)−m↑(z ,θ)

}2

and prove that (1) holds. To that end we introduce

f̃n(θ) =
∞∑
z=1

wz(θ0)1{jn(z)>0}

{
m̂n(z)−m↑(z ,θ)

}2
, n ∈ N, θ ∈ Θ,

and we prove (using our assumptions) that for each ε > 0,

1 limn→∞ P
[
supθ∈Θ

∣∣∣f̂n(θ)− f̃n(θ)
∣∣∣ > ε|Zn > 0

]
= 0.

2 limn→∞ P
[
supθ∈Θ

∣∣∣f̃n(θ)− f (θ)
∣∣∣ > ε|Zn > 0

]
= 0.
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Additional results

Idea of the proof of asymptotic normality

We use a Taylor expansion for the function ∇f̂n(·) around θ0 on the set
{Zn > 0},

0 = ∇f̂n(θ̂n) = ∇f̂n(θ0) +∇2f̂n(θn)>(θ̂n − θ0),

where θn is a point between θ̂n and θ0, and ∇2f̂n(θn) is the Jacobian
matrix of f̂n(·) at θn. Then,

√
n(θ̂n − θ0) = −

(
∇2f̂n(θn)

)−1√
n∇f̂n(θ0).
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Additional results

Idea of the proof of asymptotic normality

We then prove the result in two steps:

1 If Ψζ(θ0)(·) is the distribution function of a b-dimensional normal
distribution with mean vector 0 and covariance matrix ζ(θ0), and
x1, . . . , xb ∈ R, then

lim
n→∞

P

[
−
√
n
∂ f̂n(θ0)

∂θj
≤ xj , j = 1, . . . , b

∣∣∣∣Zn > 0

]
= Ψζ(θ0)(x1, . . . , xb).

2 For each ε > 0,

lim
n→∞

P

[∣∣∣∣∂2 f̂n(θn)

∂θj∂θl
− ηjl(θ0)

∣∣∣∣ > ε|Zn > 0

]
= 0, j , l = 1, . . . , b.
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Additional results

Estimation in the quasi-stationary phase
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Fig: Left: confidence regions for levels 50%, 75%, 90%, 95%, 97.5%. Centre: marginal
distribution of K . Right: marginal distribution of the estimator of v .
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