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Imagine a collection of objects that merge and fragmentate
randomly along the time:

If we start from infinitely many objects, is the coalescence
strong enough for having finitely many ones at some time?
→ coming down from infinity

If we start from a finite number of objects, is the
fragmentation strong enough for having infinitely many ones
at some time? → explosion

Can we find regimes where the configuration with infinitely
many objects is regular?

We study the setting of Exchangeable Fragmentation-Coalescence
processes.
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Exchangeable fragmentation-coalescence (EFC)

An EFC process is a Markov process (Π(t), t ≥ 0) valued in the
space of partitions of N:

P∞ := {π = (π1, π2, · · · );∪i≥1πi = N},

endowed with the distance d(π, π′) = max{n ≥ 1 : π|[n] = π′|[n]}
−1,

with càdlàg paths, such that

for all t ≥ 0, Π(t) is an exchangeable partition, i.e

σΠ(t)
L
= Π(t) ∀σ permutation with finite support.

the process evolves by coalescence of blocks or fragmentation
of one block.

Characterisation & construction1 (J. Berestycki (2004)): Any EFC
is characterised in law by two σ-finite exchangeable measures
µCoag and µFrag on P∞.

1by compatibility through restriction
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Exchangeability’s consequences and Poisson construction

Facts

For any exchangeable random partition π

∀i ≥ 1, if πi 6= ∅ then it is either infinite or a singleton.

There are either infinitely many singletons (dust) or none.

Sketch of construction: coalescent part:

Let PPPC =
∑

t>0 δ(t,πc ) be a Poisson Point Process (PPP) on
P∞ with intensity dt × dµCoag. If (t, πc) is an atom of PPPC :

Π(t) = Coag(Π(t−), πc) := {∪`∈πc
i
Π`(t−), i ≥ 1}.

For instance, if

Π(t−) = {{1, 2, · · · }, {3, 5, · · ·}, {4, 6, · · ·}, {· · ·}, · · · }
πc = {{1}, {2, 3, 4, · · · }, {5}, · · · }

then

Π(t) = {{1, 2, · · · }, {3, 4, 5, 6, · · ·, · · ·, · · ·, · · · }, · · · }.
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Sketch of construction: fragmentation part:

Let PPPF =
∑

t>0 δ(t,πf ,j) be an indep PPP(dt × dµFrag × d#)
with # the counting measure.
If (t, πf , j) is an atom of PPPF :

Π(t) = Frag(Π(t−), πf , j) := {Π`(t−), ` 6= j ,Πj(t−) ∩ πfi , i ≥ 1}.

For instance, if

Π(t−) = {{1, 2, · · · }, {3, 4, 5, 6, · · · }, · · · }
j = 2 and πf = {{1, 2, 4, 5 · · · }, {3, 6, · · · }, · · · }

then
Π(t) = {{1, 2, · · · }, {3, 6, · · ·}, {4, 5, · · ·}, · · · }.
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Denote by (#Π(t), t ≥ 0) the process of the number of blocks.

Question (Coming down from infinity)

Assume #Π(0) =∞: ∃t > 0; #Π(t) <∞ ?

Pitman-Schweinsberg’s zero-one law: if no coalescence into
finitely many blocks at once is allowed then, setting
τ∞ := inf{t > 0 : #Π(t) <∞},

P(τ∞ = 0) = 1 or P(τ∞ =∞) = 1.

Pure Coalescents: µFrag ≡ 0.
1 Only sufficient conditions are known in the general case

(Ξ-coalescents: multiple simultaneous mergings)
Schweinsberg (EJP 2003), Herriger and Möhle (ALEA 2012).

2 Schweinsberg found a necessary and sufficient condition for
the Λ-coalescents (no simultaneous multiple mergings) for
which µCoag is carried over simple partitions, i.e. those with
only one non-singleton block.
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Some EFCs:

1 J. Berestycki showed that if µFrag(P∞) =∞, #Π(t) =∞
apart perhaps at exceptional times when all blocks coalesce
instantaneously into finitely many.

2 ’Fast’-EFC: Kyprianou, Pagett, Rogers, Schweinsberg
(AOP2017) studied Kingman coalescence versus
fragmentation of a block into singletons:

µCoag = cK
∑

i<j δK(i,j) with K (i , j) := (· · · , {i , j}, · · · ) where
here · · · are singletons and cK > 0
µFrag = λδ0[∞]

, where 0[∞] = {{1}, {2}, · · · } and λ ≥ 0.

→ (Π(t), t ≥ 0) comes down from infinity iff 2λ/cK < 1.

When 0 < 2λ/cK < 1, the process #Π makes excursions away
from ∞, and the boundary ∞ is regular for itself.
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Simple EFC processes

A simple EFC is a process (Π(t), t ≥ 0) such that

1 coalescences are multiple but not simultaneous:

Λ-coalescent.
2 The fragmentations have finite rate:

µFrag(P∞) <∞

and there is no fragmentations into singletons:

µFrag({π : π contains singletons }) = 0

Facts

The process #Π is right-continuous, and at any time t such
that #

(
Π(t−)

)
<∞, it has left-limits.

When the simple EFC process Π evolves in the space of finite
partitions, Pfinite

∞ := {π ∈ P∞ : #π <∞}, the process #Π is
Markov with piecewise constant sample paths in N.
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Proposition

Let (Π(t), t ≥ 0) be a simple EFC:

(#Π(t), t < ζ) started from #Π(0) = n ∈ N

with ζ := inf{t > 0; #Π(t−) or #Π(t) =∞}, is a Markov process
with generator L = Lc + Lf defined by

Lcg(n) :=
∑

2≤k≤n

(
n

k

)
λn,k

(
g(n − k + 1)− g(n)

)
with λn,k :=

∫
]0,1]

xk(1− x)n−kx−2Λ(dx) + cK1{k=2}.

Lf g(n) :=
∑

1≤k≤∞
nµ(k)

(
g(n + k)− g(n)

)
.

Λ(dx) := x2µCoag(|π|↓ ∈ dx) coalescence measure,

µ(k) := µFrag(#π = k − 1) splitting measure,
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Coming down from infinity of Λ-coalescents

Set for all n ≥ 2

Φ(n) :=
n∑

k=2

(
n

k

)
λn,k(k − 1)

=

∫
]0,1[

((1− x)n + nx − 1)x−2Λ(dx) + cK

(
n

2

)
= total rate of decrease of #Π starting from n blocks.

Schweinsberg’s condition for coming down from infinity
(CDI): Let Π be a Λ-coalescent. If Λ({1}) = 0 (no instantaneous
total coalescence allowed) and #Π(0) =∞ then

#Π(t) <∞ for all t > 0 a.s.⇐⇒
∞∑
n=2

1

Φ(n)
<∞. (1)
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Coming down from infinity of simple EFCs

Let Π be a simple EFC. We suppose Λ({1}) = 0.
Set

µ̄(k) := µ({k, · · · ,∞}) for all k ≥ 1.

Theorem (F. 2022)

Assume #Π(0) =∞ and
∑∞

n=2
1

Φ(n) <∞. Let θ? and θ? in [0,∞]
be:

θ? := lim inf
n→∞

∞∑
k=1

nµ̄(k)

Φ(k + n)
and θ? := lim sup

n→∞

∞∑
k=1

nµ̄(k)

Φ(k + n)
,

If θ? < 1 then Π comes down from infinity.

If θ? > 1 then Π stays infinite.

o #Π might explode even if it comes down from infinity.
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A heuristic

Consider the function f : n 7→
∑∞

j=n+1
1

Φ(j) .

1 f (n) ≈ time needed for the pure coalescent to go below level
n + 1 when started from ∞, (speed of coming down from
infinity of the Λ-coalescent= vt := inf{u > 0 : f (u) > t}:
Limic, Berestycki2, AoP 2010).

2 Let Z be the nber of blocks formed by a fragmentation event:
Z has law µ(·)/µ(N̄) and the mean arrival time of a
fragmentation is 1/nµ(N̄).

3 By Fubini,
∞∑
k=1

nµ̄(k)

Φ(n + k)
= nµ(N̄)E

[
n+Z∑

k=n+1

1

Φ(k)

]
=

E[f (n)− f (n + Z )]

1/µ(N̄)n
.

θ? < 1 iff #Π jumps from n to n + Z at smaller rate than it comes
down from n + Z to n for arbitrary large n.
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Corollary (A moment condition)

Suppose µ(∞) = 0 and
∑∞

n=2 1/Φ(n) <∞.

If
∞∑
n=2

n

Φ(n)
µ̄(n) <∞, then θ = 0 =⇒ comes down from infinity.

In particular if µ has a first moment then θ = 0.

Corollary (Kingman coalescent versus fragmentation into infinitely
many blocks)

Suppose
∑∞

n=2 1/Φ(n) <∞ and set cK = Λ({0}) ≥ 0 and
λ := µ(∞) ≥ 0.

(1) If cK > 0 then θ = 2λ/cK,
→ same phase transition as for the ’fast’ EFC.
→ If λ = 0 then θ = 0 (coming down from infinity=CDI).

(2) If λ > 0 and cK = 0 then θ =∞ (no CDI).
→ Only the Kingman’s part can face a fragmentation dislocating a
block into infinitely many of its sub-blocks...
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Notice that

Φ(n) ∼
n→∞

Ψ(n) :=

∫ 1

0
(e−nx − 1 + nx)x−2Λ(dx).

Theorem (Λ & µ with regular variations)

If Φ(n) ∼
n→∞

dnβ+1, β ∈ (0, 1] and µ(n) ∼
n→∞

b
nα+1 with α ∈ (0, 1)

and b > 0, then

1 if β < 1− α, θ =∞
2 if β > 1− α, θ = 0

3 if β = 1− α, θ = b
d

1
α(1−α) ∈ (0,∞):

1 if b/d > α(1− α), Π stays infinite,
2 if b/d < α(1− α), Π comes down from infinity.
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Explosion

Question (Explosion)

Assume #Π(0) <∞: ∃t > 0; #Π(t) =∞ ?

Clearly if µ(∞) > 0, #Π explodes, but can we have ‘continuous’
explosion, that is to say, accumulation of large jumps on bounded
intervals of time bringing the number of blocks to ∞ in finite
time? Even when the coalescent part comes down from infinity?

The condition θ? < 1 does not imply in general non-explosion of
#Π. Other taylor-made parameters have to be designed...
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Explosion in pure fragmentation processes

In this case, #Π is a discrete branching process with splitting
measure µ (no death). For any n ≥ 1, set

`(n) :=
n∑

k=1

µ̄(k).

Doney’s condition for explosion of pure branching process
(whose generator is Lf ) . If #Π(0) <∞ then

∃t > 0 : #Π(t) =∞⇐⇒
∑∞

n=1
1

n`(n) <∞

We now introduce a technical condition on the function `.
Condition H: there exists an eventually non-decreasing positive
function g such that:∫∞ dx

xg(x) <∞ and `(n) ≥ g(log n) log n for large enough n. (H).

Moreover

H =⇒ Doney’s condition.
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Explosion in simple EFC processes

Theorem (F. Zhou 2022: explosion and exit)

Assume condition H holds.

1 If ρ := lim sup
n→∞

Φ(n)
n`(n) < 1/2, then (#Π(t), t ≥ 0) explodes

almost surely.

2 If furthermore,
∑∞

n=2
1

Φ(n) <∞ and ρ < 1/4, then ∞ is an

exit boundary (the process stays at ∞ after explosion).

Theorem (F. Zhou 2022: non-explosion and entrance)

1 If
∑∞

n=2
n

Φ(n) µ̄(n) <∞, then (#Π(t), t ≥ 0) does not explode
almost surely.

2 If furthermore,
∑∞

n=2
1

Φ(n) <∞, then ∞ is an entrance

boundary (the process leaves∞ and never returns there back).
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Theorem (F., Zhou 2022)

If Φ(n) ∼
n→∞

dn2−α and µ(n) ∼
n→∞

b
n1+α : then ∞ is:

0 1 α

b/d
α(1− α)

α sin(πα)
π

exit
regular

entrance

Example

Beta-coalescent versus stable branching.

In the regular case, the process Π leaves and returns to the set of
partitions with infinitely many blocks (more precisely, it can only
return to partitions with blocks of infinite size).
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A condition for explosion in CTMCs

Let (N(t), t ≥ 0) be a Markov process valued in N, with generator
say L .
For any a > 0 and any n ∈ N, set

ga(n) := n1−a and Ga(n) := − 1
n1−a L ga(n).

Theorem (F. Zhou 2022)

If there exist a > 1 and an eventually non-decreasing positive
function g satisfying

∫∞ dx
xg(x) <∞ such that for all large enough n

Ga(n) ≥ g(log n) log n,

then, setting
τ+
∞ = inf{t > 0 : Nt− =∞},

we have Pn(τ+
∞ <∞) > 0 for all large enough n ∈ N.
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A word on the proofs for the explosion

1 We start by establishing that big negative jumps due to the
coalescence which would make decrease the number of blocks
by a fixed proportion p cannot occur immediately;

2 We study the process ignoring those large negative jumps: its
generator is

L p = L c,p + L f

with

L c,pf (n) =

[np]∑
k=2

(
n

k

)
λn,k

(
f (n − k + 1)− f (n)

)
3 The function Ga associated to L p is controlled by Φ and `

and by using the previous theorem and by optimizing in a and
p, we get the explosion.
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Conclusion and References

The last result for explosion is too short for studying the case with
a Kingman component...

Thank you for your attention

J. Berestycki : Exchangeable fragmentation-coalescence
processes and their equilibrium measure, EJP 2004

Kyprianou, Pagett, Rogers, Schweinsberg: a phase transition
in excursions from infinity in the fast
fragmentation-coalescence process, AoP 2017

Foucart : A phase transition in the coming down from infinity
of simple EFCs, AAP 2022.

Foucart and Zhou : On the explosion of the number of
fragments in simple EFCs, AIHP 2022.

Foucart and Zhou : On the boundary classification of
Λ-Wright-Fisher processes with frequency-dependent selection
(to appear in AHL 2023+)
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Representation of µFrag and µCoag

Paint-box: Let P1
m :=

{
(s1, s2, ...); s1 ≥ s2 ≥ ... ≥ 0,

∑∞
i=1 si = 1

}
.

Let s ∈ P1
m, (Ui )ı≥1 uniform iid on (0, 1): an s-paint-box is a random

partition π:

i ∼ j iff Ui et Uj fall in the same subinterval of [0, 1].

Denote by ρs := the law of the s-paintbox π.

0 1

U5 U2 U4U1

U4

U3

π|[5] = {{1, 3}, {2, 5}, {4}}
s1 s2

The measures of coalescence and fragmentation take the form:

µCoag(dπ) := ck
∑

1≤i<j

δK(i,j) +

∫
Pm

ρs(·)νCoag(ds)

µFrag(dπ) := ce
∑
i≥1

δe(i) +

∫
Pm

ρs(·)νDisl(ds)

with K (i , j) := (· · · , {i , j}, · · · ) where · · · are singletons and
e(i) := ({i},N \ {i}).
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Number of blocks in simple EFCs

Coalescence. To each atom (t, πc) ∈ PPPC , associate (Xi , i ≥ 1)
s.t.

Xi = 1 if the block i takes part to the merging ({i} is not a
block of πc)
Xi = 0 otherwise ({i} is a block of πc).

The Xi are exchangeable Bernoulli r.v’s with de Finetti measure
x−2Λ(dx) where Λ is a finite measure on [0, 1]. Given that
#Π(t−) = n,

the jump : n 7→ n − k + 1 has for rate
(n
k

)
λn,k

with
λn,k :=

∫
]0,1]

xk(1− x)n−kx−2Λ(dx) + cK1{k=2}.

Indeed,

#Coag(Π(t−), πc) = #{∪i∈πc
`∩[n]Πi (t−), ` ≥ 1} = n −

n∑
i=1

Xi + 1
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Fragmentation. Let PPPF =
∑

t>0 δ(t,πf ,j) be an independent
PPP with intensity dt ⊗ µFrag(dπ)⊗#(dj). To each atom
(t, πf , j) ∈ PPPF , associate the r.v k := #πf − 1. This gives a
PPP on R+ × N̄× N with intensity dt ⊗ µ⊗#, where

µ := image of µFrag by the map π 7→ #π − 1.

If j ≤ #Π(t−) then the atom (t, πf , j) is “seen” by Π(t−) and by
exchangeability: given that #Π(t−) = n,

the jump : n 7→ n + k has for rate nµ(k), ∀k ∈ N̄.

Indeed

#Π(t) = #Frag(Π(t−), πf , j)

= #Π(t)− 1 + #{Πj(t−) ∩ πfi , 1 ≤ i ≤ #πf }.

For all i ≥ 1: Πj(t−) ∩ πfi 6= ∅ a.s. Thus

#{Πj(t−) ∩ πfi , 1 ≤ i ≤ #πf } − 1 = #πf − 1 = k
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