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A binary branching process

Consider a collection of particles {xi (t) : i = 1, . . . ,Nt} taking values in E ∪ ∂ that evolve
as follows.

Particles move in E according to a continuous time Markov process ((ξt)t≥0,Px ).

When at y ∈ E , at rate b(y) a particle is replaced by two new particles at positions
y1, y2 ∈ E , i.e. branching occurs.

When at y ∈ E , at rate k(y) particles are sent to ∂, i.e. soft killing occurs.

At time T∂ a particle is sent to ∂, i.e. hard killing occurs.
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A binary branching process

The branching process is then defined via the atomic measures:

Xt :=
Nt∑
i=1

δxi (t), t ≥ 0.

Define its (linear) expectation semigroup,

ψt [g ](x) := Eδx [〈g ,Xt〉] := Eδx

[
Nt∑
i=1

g(xi (t))

]
, t ≥ 0, x ∈ E .
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A Perron-Frobenius decomposition

Particularly interested in branching processes for which there exists
λ∗ ∈ R,
a positive function ϕ ∈ L+

∞(E),
a probability measure ϕ̃ on E

such that for all g ∈ L+
∞(E), x ∈ E , we have

ψt [g ](x) ∼ eλ∗tϕ(x)〈ϕ̃, g〉, t →∞.

Aim: find efficient ways to estimate λ∗, ϕ and ϕ̃.
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Example: Branching Brownian motion

E = [−L, L], L > 0
ξ is Brownian motion
b = 1, k = 0, killed on {−L, L}, local branching.
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Example: Growth-fragmentation

E = [0,∞).
ξ an appropriate Markov process representing the mass of the particle.
fragment at rate b(x), mass of daughter particles are y and x − y where y ∼ κ(x , ·).
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Example: Neutron transport

E = D × V
ξ is a piecewise deterministic Markov process
b(r , v) = σf(r , v), k(r , v) = σa(r , v), hard killing on {(r , v) : r ∈ ∂D, v · nr > 0},
particles are produced at the same position but may have different velocities.
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Monte Carlo methods: branching process

Recall the Perron Frobenius asymptotic,

ψt [g ] ∼ eλ∗t〈ϕ̃, g〉ϕ, t →∞.

Manipulation of this allows us to estimate the eigen-elements, e.g.

λ∗ = lim
t→∞

1
t logψt [1](x) = lim

t→∞

1
t logEδx [Nt ].
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Monte Carlo methods: many-to-one

The many-to-one states that there exists a process (Yt)t≥0 on E such that

Eδx [〈g ,Xt〉] = Ex

[
e
∫ t

0
b(Ys )−k(Ys )dsg(Yt)1t<τ∂

]
, t ≥ 0, x ∈ E .

Thus, we can replace the branching process by the single weighted trajectory, e.g.

λ∗ = lim
t→∞

1
t logψt [1](x) = lim

t→∞

1
t log Ex

[
e
∫ t

0
b(Ys )−k(Ys )ds1t<τ∂

]
.
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Monte Carlo methods: (Fake) Fleming Viot

Let (Y ,P†) be a sub-Markov process.

Simulate N ≥ 1 independent copies of (Y ,P†) until one of the particles is absorbed.

Figure: Fleming Viot particle system
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Monte Carlo methods: (Fake) Fleming Viot

When this happens, duplicate one of the remaining N − 1 particles and return to the
previous step.

Figure: Fleming Viot particle system
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Monte Carlo methods: (Fake) Fleming Viot

Figure: Fleming Viot particle system
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Monte Carlo methods: (Fake) Fleming Viot

Let At denote the number of resampling events up to time t.

Then

E†x [g(Yt)] = E

[(N − 1
N

)At
N∑

i=1

f (Y i
t )

]
.

Thus, if (Y ,P†) admits a QSD with associated rate λ0, we can use the particle
system to estimate these.
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Monte Carlo methods: (Fake) Fleming Viot

With β := sup
x∈E

(b(x)− k(x)), consider

e−βtψt [g ](x) = Ex

[
e
∫ t

0
(b(Ys )−k(Ys )−β)dsg(Yt)1{t<τ∂}

]
=: E†x [g(Yt)].

In this case, we have

Eδx [〈g ,Xt〉] = eβtE

[(N − 1
N

)At
N∑

i=1

f (X i
t )

]
and

λ∗ = β + lim
t→∞

1
t logE

[(N − 1
N

)At
]
.
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Monte Carlo methods: (Fake) Fleming Viot
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A binary branching model with Moran interactions (BBMMI)

Pf (N) is the collection of finite subsets of N.

Fix N0 ≥ 2. We consider a particle system (St , (X i
t )i∈St )t≥0, where

St ∈ Pf (N) is the set enumerating the particles in the system at time t ≥ 0,
X i

t denotes the position of the i-th particle in the system at time t ≥ 0.

Let bi : (E ∪ ∂)Pf (N) → [0,∞) and κi : (E ∪ ∂)Pf (N) → [0,∞), be bounded
measurable functions, i ∈ N.

Let pi : (E ∪ ∂)Pf (N) → [0, 1] and qi : (E ∪ ∂)Pf (N) → [0, 1] be measurable functions
for i ∈ N.
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BBMMI: Evolution of the system

1 The particle X i
0, i ∈ S0, evolves as an independent copy of Y .

2 Set

τ i
b = inf{t > 0 :

∫ t

0
bi (X i

s , i ∈ S0)ds > eb
i },

τ i
κ = inf{t > 0 :

∫ t

0
κi (X i

s , i ∈ S0)ds > eκi },

τ i
∂ = inf{t > 0 : X i

t ∈ ∂}.

3 Further set τ1 = inf
i∈S0

(τ i
b ∧ τ i

κ ∧ τ i
∂) and let i0 denote the index of the (unique) particle

such that τ1 = τ i0
b ∧ τ

i0
κ ∧ τ i0

∂ .
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BBMMI: Evolution of the system

4 If τ1 ∈ {τ i0
∂ , τ

i0
κ }, we say a killing event occurred.

 Remove particle i0 from the system
 With probability pi0 (X i

τ1 , i ∈ S0) a resampling event occurs: another particle is
chosen uniformly at random and is duplicated.

5 If τ1 = τ i0
b , we say a branching event occurred.

 Duplicate particle i0.
 With probability qi0 (X i

τ1 , i ∈ S0) a selection event occurs: one of the particles is
selected uniformly at random and removed from the system.

Repeat to generate a sequence τ0 := 0 < τ1 < τ2 < · · · < τn < · · · of
resampling/selection times.
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BBMMI: Example

Example: branching Brownian motion killed at 0 and 1.
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BBMMI: Example

Example: branching Brownian motion killed at 0 and 1.
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BBMMI: Notation

Define
ρn = n-th resampling time.
σn = n-th selection time.

Define
At := sup{n ≥ 0 : ρn ≤ t}, the number of resampling events up to time t,
Bt := sup{n ≥ 0 : σn ≤ t}, the number of selection events up to time t,

Define ΠA
t :=

At∏
i=1

(
Nρn − 1

Nρn

)
and ΠB

t :=
Bt∏
i=1

(
Nσn + 1

Nσn

)
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BBMMI: Main result

ψt = semigroup of the branching process/many-to-one
mt = empirical distribution of the BBMMI at time t.

Theorem (Cox, H. & Villemonais)
Under certain assumptions, for all time T ≥ 0 and all bounded measurable functions
f : E → R, the BBMMI satisfies

ψT f (x) = Ex
[
ΠA

T ΠB
T mT (f )

]
. (1)

Moreover, ∥∥∥∥ ψT f (x)
ψT 1E (x) −

mT (f )
mT (1E ) 1mT 6=0

∥∥∥∥
2
≤ CT√

N0

‖f ‖∞
m0ψT 1E/N0

, (2)

where CT is a constant depending on ‖b‖∞ and T .
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BBMMI: The assumptions

(B1) For any x ∈ E and t ≥ 0, Px (τ∂ = t) = 0 and Px (τ∂ > t) > 0.

(B2) For all s ∈ Pf (N), (xi )i∈s and i0 ∈ s,

bi0 (xi , i ∈ s)− κi0 (xi , i ∈ s) = b(xi0 )− κ(xi0 ).

(B3) For all s ∈ Pf (N), (xi )i∈s and i0 ∈ s,

pi0 (xi , i ∈ s) = 0 whenever |s| = 1.

(B4) The sequence, (τn)n≥1, of event times satisfies τn →∞ as n→∞.
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Sketch proof

Define
νf

t = ΠA
t ΠB

t

∑
i∈St

ψT−t f (X i
t ).

Then the many-to-one formula (1) in the theorem can be written as

νf
0 = ψT f (x) = Ex

[
ΠA

T ΠB
T mT f

]
= Ex [νf

T ].

The idea behind the proof is to find a martingale decomposition for νf
T − νf

0 .
(1) then follows by taking expectations.
(2) follows by studying the L2 norm of the martingales.
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Sketch proof

We can find two martingales M and M such that

νf
t − νf

0 = ΠA
t ΠB

t (Mt −MτCt
) +

Ct∑
n=1

ΠA
τn ΠB

τn (Mτn −Mτn−1 )

+
At∑

n=1

ΠA
ρn ΠB

ρn (Mρn −Mρn−1 ) +
Bt∑

n=1

ΠA
σn ΠB

σn (Mσn −Mσn−1 ). (3)
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BBMMI: Some remarks

p = q = 0  binary branching process.
Then ΠA

T = ΠB
T = 1 a.s., and (1) is the classical many-to-one formula.

When p = q = 1, we obtain an extension of the (F)FV particle system

It is possible to let p and q depend on time.

The above dynamics allow one to constrain the size of the process to remain
between two bounds 0 ≤ Nmin ≤ Nmax , Nmin 6= 1, by choosing pi0 (xi , i ∈ s) = 1
whenever |s| = Nmin, and qi0 (xi , i ∈ s) = 1 whenever |s| = Nmax . We call this the
Nmin-Nmax model.
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A branching birth and death process

E = {1, . . . ,M} for some M ≥ 1. When at x ∈ E , one of the following things may occur:

the particle jumps with rate x2 to state
max{1, x − 1} with probability x/(x + 1),
min{x + 1,M} with probability 1/(x + 1).
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E = {1, . . . ,M} for some M ≥ 1. When at x ∈ E , one of the following things may occur:

the particle jumps with rate x2 to state
max{1, x − 1} with probability x/(x + 1),
min{x + 1,M} with probability 1/(x + 1).

at rate b(x) = x , a new particle is produced at the same site, which will continue to
evolve independently according to the same dynamics.
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Nmin-Nmax vs (F)FV

We now consider the problem of numerically approximating νM , the left
eigenmeasure of the process.

Fix T > 0 and N0 = Nmin = Nmax .

XM
N = empirical distribution of the Nmin–Nmax particle system.
YM

N = the empirical distribution FV particle systems.

The estimator is θ̂N , the empirical distribution of the relevant particle system.

We compare three quantities:
the bias of the estimator, |E(θ̂N (f ))− νM(f )|,

the standard deviation of the estimator, Std(θ̂N ),

the number of interaction events, (AT + BT )/T .
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Nmin-Nmax vs (F)FV

N = 10 |E(θ̂N)− νM(f )| Std(θ̂N) (AT + BT )/T

M = 10 Nmin–Nmax 0.08 0.30 14.0

FV 0.10 0.41 87.2

M = 100 Nmin–Nmax 0.08 0.30 14.0

FV 0.20 0.51 988

M = 1000 Nmin–Nmax 0.08 0.30 14.0

FV 0.22 0.53 9989

M = +∞ Nmin–Nmax 0.08 0.30 14.0

FV ∗ ∗ ∗
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Nmin-Nmax vs (F)FV

N = 100 |E(θ̂N)− νM(f )| Std(θ̂N) (AT + BT )/T

M = 10 Nmin–Nmax 0.01 0.12 144

FV 0.02 0.18 857

M = 100 Nmin–Nmax 0.01 0.12 144

FV 0.10 0.39 9866

M = 1000 Nmin–Nmax 0.01 0.12 144

FV 0.20 0.50 99873

M = +∞ Nmin–Nmax 0.01 0.12 144

FV ∗ ∗ ∗
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Nmin-Nmax vs (F)FV

“Theorem”
The BBMMI wins!
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Future work

Extending the results to more general branching processes

Scaling limits and genealogical structure

Central limit theorem

Branching processes with infinite branching rate

Relation to adaptive multilevel splitting for rare event simulation

. . .
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Thank you!
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Sketch proof

Define

Mt :=
∑
i∈St

ψT−t f (X i
t ) −

∑
i∈S0

ψT f (X i
0) −

At∑
n=1

ψT−ρn f (X in
ρn ) +

Bt∑
n=1

ψT−σn f (X jn−1
σn ). (4)

and

Mρn −Mρn− := ψT−ρn f (X in−1
ρn )− 1

Nρn − 1
∑

i∈Sρn−\{i
′
n−1}

ψT−ρn f (X i
ρn ),

Mσn −Mσn− := 1
Nσn + 1

 ∑
i∈Sσn−

ψT−σn f (X i
σn ) + ψT−σn f (X

j′n−1
σn )

− ψT−σn f (X
j′n−1
σn ).
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