A binary branching model with Moran-type interactions

Emma Horton University of Melbourne

Branching Processes and Applications, Angers 22-26 May 2023

Joint work with Alex Cox (University of Bath) and Denis Villemonais (Université de Lorraine)

Emma Horton

Contents

1 Motivation

- A binary branching process
- Existing Monte Carlo methods

A binary branching model with Moran interactions (BBMMI)

- The model and main result
- Sketch proof of the main result

3 An example

Contents

Motivation

- A binary branching process
- Existing Monte Carlo methods

2 A binary branching model with Moran interactions (BBMMI)

- The model and main result
- Sketch proof of the main result

3 An example

Consider a collection of particles $\{x_i(t) : i = 1, ..., N_t\}$ taking values in $E \cup \partial$ that evolve as follows.

- Particles move in *E* according to a continuous time Markov process $((\xi_t)_{t\geq 0}, P_x)$.
- When at $y \in E$, at rate b(y) a particle is replaced by two new particles at positions $y_1, y_2 \in E$, i.e. branching occurs.
- When at $y \in E$, at rate k(y) particles are sent to ∂ , i.e. soft killing occurs.
- At time T_{∂} a particle is sent to ∂ , i.e. hard killing occurs.

• The branching process is then defined via the atomic measures:

$$X_t := \sum_{i=1}^{N_t} \delta_{x_i(t)}, \qquad t \ge 0.$$

• Define its (linear) expectation semigroup,

$$\psi_t[g](x) := \mathbb{E}_{\delta_x}\left[\langle g, X_t
angle
ight] := \mathbb{E}_{\delta_x}\left[\sum_{i=1}^{N_t} g(x_i(t))
ight], \quad t \ge 0, x \in E.$$

メロト メタト メヨト メヨト

Particularly interested in branching processes for which there exists

- $\lambda_* \in \mathbb{R}$,
- a positive function $\varphi \in L^+_\infty(E)$,
- $\bullet\,$ a probability measure $\tilde{\varphi}$ on E

such that for all $g \in L^+_{\infty}(E)$, $x \in E$, we have

$$\psi_t[g](x) \sim e^{\lambda_* t} \varphi(x) \langle \tilde{\varphi}, g \rangle, \quad t \to \infty.$$

Particularly interested in branching processes for which there exists

- $\lambda_* \in \mathbb{R}$,
- a positive function $\varphi \in L^+_\infty(E)$,
- $\bullet\,$ a probability measure $\tilde{\varphi}$ on E

such that for all $g \in L^+_{\infty}(E)$, $x \in E$, we have

$$\psi_t[g](x) \sim e^{\lambda_* t} \varphi(x) \langle \tilde{\varphi}, g \rangle, \quad t \to \infty.$$

Aim: find efficient ways to estimate λ_* , φ and $\tilde{\varphi}$.

Example: Branching Brownian motion

- *E* = [−*L*, *L*], *L* > 0
- ξ is Brownian motion
- b = 1, k = 0, killed on $\{-L, L\}$, local branching.

Example: Growth-fragmentation

- $E = [0, \infty)$.
- ξ an appropriate Markov process representing the mass of the particle.
- fragment at rate b(x), mass of daughter particles are y and x y where $y \sim \kappa(x, \cdot)$.

Image: A matching of the second se

Example: Neutron transport

- $E = D \times V$
- ξ is a piecewise deterministic Markov process
- b(r, v) = σ_f(r, v), k(r, v) = σ_a(r, v), hard killing on {(r, v) : r ∈ ∂D, v ⋅ n_r > 0}, particles are produced at the same position but may have different velocities.

Recall the Perron Frobenius asymptotic,

$$\psi_t[\mathbf{g}] \sim \mathrm{e}^{\lambda_* t} \langle \tilde{\varphi}, \mathbf{g} \rangle \varphi, \quad t \to \infty.$$

Manipulation of this allows us to estimate the eigen-elements, e.g.

$$\lambda_* = \lim_{t \to \infty} \frac{1}{t} \log \psi_t[\mathbf{1}](x) = \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}_{\delta_x}[N_t].$$

・ロト ・回 ト ・ ヨト ・

The many-to-one states that there exists a process $(Y_t)_{t>0}$ on E such that

$$\mathbb{E}_{\delta_{X}}[\langle g, X_{t} \rangle] = \mathbf{E}_{X}\left[\mathrm{e}^{\int_{0}^{t} b(Y_{s})-k(Y_{s})\mathrm{d}s}g(Y_{t})\mathbf{1}_{t<\tau_{\partial}}\right], \quad t \geq 0, x \in E.$$

Thus, we can replace the branching process by the single weighted trajectory, e.g.

$$\lambda_* = \lim_{t \to \infty} \frac{1}{t} \log \psi_t[\mathbf{1}](x) = \lim_{t \to \infty} \frac{1}{t} \log \mathsf{E}_x \left[e^{\int_0^t b(Y_s) - k(Y_s) ds} \mathbf{1}_{t < \tau_\partial} \right].$$

The many-to-one states that there exists a process $(Y_t)_{t>0}$ on E such that

$$\mathbb{E}_{\delta_{x}}[\langle g, X_{t} \rangle] = \mathbf{E}_{x}\left[\mathrm{e}^{\int_{0}^{t} b(Y_{s})-k(Y_{s})\mathrm{d}s}g(Y_{t})\mathbf{1}_{t<\tau_{\partial}}\right], \quad t \geq 0, x \in E.$$

Thus, we can replace the branching process by the single weighted trajectory, e.g.

$$\lambda_* = \lim_{t \to \infty} \frac{1}{t} \log \psi_t[\mathbf{1}](x) = \lim_{t \to \infty} \frac{1}{t} \log \mathbf{E}_x \left[e^{\int_0^t b(Y_s) - k(Y_s) ds} \mathbf{1}_{t < \tau_\partial} \right].$$

Monte Carlo methods: (Fake) Fleming Viot

Let $(Y, \mathbf{P}^{\dagger})$ be a sub-Markov process.

Simulate $N \ge 1$ independent copies of $(Y, \mathbf{P}^{\dagger})$ until one of the particles is absorbed.

Figure: Fleming Viot particle system

When this happens, duplicate one of the remaining N - 1 particles and return to the previous step.

Figure: Fleming Viot particle system

Monte Carlo methods: (Fake) Fleming Viot

Figure: Fleming Viot particle system

• Let A_t denote the number of resampling events up to time t.

• Then
$$\mathbf{E}_x^\dagger[g(Y_t)] = \mathbb{E}\left[\left(\frac{N-1}{N}\right)^{A_t}\sum_{i=1}^N f(Y_t^i)\right].$$

Thus, if (Y, P[†]) admits a QSD with associated rate λ₀, we can use the particle system to estimate these.

< □ > < □ > < □ > < □ > < □ >

• With
$$\beta := \sup_{x \in E} (b(x) - k(x))$$
, consider
 $e^{-\beta t} \psi_t[g](x) = \mathbf{E}_x \left[e^{\int_0^t (b(Y_s) - k(Y_s) - \beta) ds} g(Y_t) \mathbf{1}_{\{t < \tau_\partial\}} \right] =: \mathbf{E}_x^{\dagger}[g(Y_t)].$

• In this case, we have

and

$$\mathbb{E}_{\delta_{X}}[\langle g, X_{t} \rangle] = \mathrm{e}^{\beta t} \mathbb{E}\left[\left(\frac{N-1}{N}\right)^{A_{t}} \sum_{i=1}^{N} f(X_{t}^{i})\right]$$

$$\lambda_* = \beta + \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}\left[\left(\frac{N-1}{N}\right)^{A_t}
ight].$$

メロト メロト メヨト メヨ

・ロト ・回ト ・ヨト・

1 Motivation

- A binary branching process
- Existing Monte Carlo methods

A binary branching model with Moran interactions (BBMMI)

- The model and main result
- Sketch proof of the main result

3 An example

- $\mathcal{P}_f(\mathbb{N})$ is the collection of finite subsets of \mathbb{N} .
- Fix $N_0 \geq 2$. We consider a particle system $(S_t, (X_t^i)_{i \in S_t})_{t \geq 0}$, where
 - $S_t \in \mathcal{P}_f(\mathbb{N})$ is the set enumerating the particles in the system at time $t \geq 0$,
 - X_t^i denotes the position of the *i*-th particle in the system at time $t \ge 0$.
- Let $b_i : (E \cup \partial)^{\mathcal{P}_f(\mathbb{N})} \to [0, \infty)$ and $\kappa_i : (E \cup \partial)^{\mathcal{P}_f(\mathbb{N})} \to [0, \infty)$, be bounded measurable functions, $i \in \mathbb{N}$.
- Let p_i: (E ∪ ∂)^{P_f(ℕ)} → [0, 1] and q_i: (E ∪ ∂)^{P_f(ℕ)} → [0, 1] be measurable functions for i ∈ ℕ.

< □ > < □ > < □ > < □ > < □ >

() The particle X_0^i , $i \in S_0$, evolves as an independent copy of Y.

2 Set

$$\begin{split} \tau_b^i &= \inf\{t > 0 : \int_0^t b_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^b\},\\ \tau_\kappa^i &= \inf\{t > 0 : \int_0^t \kappa_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^\kappa\},\\ \tau_\partial^i &= \inf\{t > 0 : X_t^i \in \partial\}. \end{split}$$

In Further set $\tau_1 = \inf_{i \in S_0} (\tau_b^i \land \tau_\kappa^i \land \tau_\partial^i)$ and let *i*₀ denote the index of the (unique) particle such that $\tau_1 = \tau_b^{i_0} \land \tau_\kappa^{i_0} \land \tau_\partial^{i_0}$.

() The particle X_0^i , $i \in S_0$, evolves as an independent copy of Y.

et

$$\begin{split} \tau_b^i &= \inf\{t > 0 : \int_0^t b_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^b\},\\ \tau_\kappa^i &= \inf\{t > 0 : \int_0^t \kappa_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^\kappa\},\\ \tau_\partial^i &= \inf\{t > 0 : X_t^i \in \partial\}. \end{split}$$

In Further set $\tau_1 = \inf_{i \in S_0} (\tau_b^i \land \tau_\kappa^i \land \tau_\partial^i)$ and let *i*₀ denote the index of the (unique) particle such that $\tau_1 = \tau_b^{i_0} \land \tau_\kappa^{i_0} \land \tau_\partial^{i_0}$.

() The particle X_0^i , $i \in S_0$, evolves as an independent copy of Y.

et

$$\begin{split} \tau_b^i &= \inf\{t > 0 : \int_0^t b_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^b\},\\ \tau_\kappa^i &= \inf\{t > 0 : \int_0^t \kappa_i(X_s^i, i \in S_0) \mathrm{d}s > \mathbf{e}_i^\kappa\},\\ \tau_\partial^i &= \inf\{t > 0 : X_t^i \in \partial\}. \end{split}$$

• Further set $\tau_1 = \inf_{i \in S_0} (\tau_b^i \wedge \tau_\kappa^i \wedge \tau_\partial^i)$ and let i_0 denote the index of the (unique) particle such that $\tau_1 = \tau_b^{i_0} \wedge \tau_\kappa^{i_0} \wedge \tau_\partial^{i_0}$.

< □ > < □ > < □ > < □ > < □ >

If τ₁ ∈ {τ^{i₀}_∂, τ^{i₀}_κ}, we say a killing event occurred.
 → Remove particle i₀ from the system
 → With probability p^{i₀}(Xⁱ_{τ1}, i ∈ S₀) a resampling event occurs: another particle is chosen uniformly at random and is duplicated.

If τ₁ = τⁱ⁰_b, we say a branching event occurred.
 → Duplicate particle i₀.
 → With probability q_{i0}(Xⁱ_{τ1}, i ∈ S₀) a selection event occurs: one of the particles is selected uniformly at random and removed from the system.

Repeat to generate a sequence $\tau_0 := 0 < \tau_1 < \tau_2 < \cdots < \tau_n < \cdots$ of resampling/selection times.

< □ > < □ > < □ > < □ > < □ >

If τ₁ ∈ {τⁱ₀, τⁱ_κ}, we say a killing event occurred.
 → Remove particle i₀ from the system
 → With probability pⁱ⁰(Xⁱ_{τ1}, i ∈ S₀) a resampling event occurs: another particle is chosen uniformly at random and is duplicated.

- **(5)** If $\tau_1 = \tau_b^{i_0}$, we say a **branching** event occurred.
 - \rightsquigarrow Duplicate particle i_0 .

 \rightsquigarrow With probability $q_{i_0}(X_{\tau_1}^i, i \in S_0)$ a selection event occurs: one of the particles is selected uniformly at random and removed from the system.

Repeat to generate a sequence $\tau_0 := 0 < \tau_1 < \tau_2 < \cdots < \tau_n < \cdots$ of resampling/selection times.

If τ₁ ∈ {τⁱ₀, τⁱ_κ}, we say a killing event occurred.
 → Remove particle i₀ from the system
 → With probability p^{i₀}(Xⁱ_{τ1}, i ∈ S₀) a resampling event occurs: another particle is chosen uniformly at random and is duplicated.

() If
$$\tau_1 = \tau_b^{i_0}$$
, we say a **branching** event occurred.

 \rightsquigarrow Duplicate particle i_0 .

 \rightsquigarrow With probability $q_{i_0}(X_{\tau_1}^i, i \in S_0)$ a selection event occurs: one of the particles is selected uniformly at random and removed from the system.

Repeat to generate a sequence $\tau_0 := 0 < \tau_1 < \tau_2 < \cdots < \tau_n < \cdots$ of resampling/selection times.

< □ > < □ > < □ > < □ > < □ >

BBMMI: Example

Example: branching Brownian motion killed at 0 and 1.

・ロト ・回ト ・ヨト

BBMMI: Example

Example: branching Brownian motion killed at 0 and 1.

• • • • • • • • • • •

Define

- $\rho_n = n$ -th resampling time.
- $\sigma_n = n$ -th selection time.

- Define
 - $A_t := \sup\{n \ge 0 : \rho_n \le t\}$, the number of resampling events up to time t,
 - $B_t := \sup\{n \ge 0 : \sigma_n \le t\}$, the number of selection events up to time t,

• Define
$$\Pi_t^A := \prod_{i=1}^{A_t} \left(\frac{N_{\rho_n} - 1}{N_{\rho_n}} \right)$$
 and $\Pi_t^B := \prod_{i=1}^{B_t} \left(\frac{N_{\sigma_n} + 1}{N_{\sigma_n}} \right)$

< □ > < □ > < □ > < □ > < □ >

- $\psi_t = \text{semigroup of the branching process/many-to-one}$
- m_t = empirical distribution of the BBMMI at time t.

Theorem (Cox, H. & Villemonais)

Under certain assumptions, for all time $T \ge 0$ and all bounded measurable functions $f : E \to \mathbb{R}$, the BBMMI satisfies

$$\psi_T f(x) = \mathbf{E}_x \left[\Pi^A_T \, \Pi^B_T \, m_T(f) \right]. \tag{1}$$

< □ > < □ > < □ > < □ > < □ >

Moreover,

$$\left\|\frac{\psi_{\mathcal{T}}f(x)}{\psi_{\mathcal{T}}\mathbf{1}_{E}(x)} - \frac{m_{\mathcal{T}}(f)}{m_{\mathcal{T}}(\mathbf{1}_{E})}\mathbf{1}_{m_{\mathcal{T}}\neq 0}\right\|_{2} \leq \frac{C_{\mathcal{T}}}{\sqrt{N_{0}}} \frac{\|f\|_{\infty}}{m_{0}\psi_{\mathcal{T}}\mathbf{1}_{E}/N_{0}},\tag{2}$$

where C_T is a constant depending on $||b||_{\infty}$ and T.

$$(\mathsf{B1}) \ \text{For any } x \in E \ \text{and} \ t \geq \mathsf{0}, \ \mathbb{P}_x(\tau_\partial = t) = \mathsf{0} \ \text{and} \ \mathbb{P}_x(\tau_\partial > t) > \mathsf{0}.$$

(B2) For all $s \in \mathcal{P}_{f}(\mathbb{N})$, $(x_{i})_{i \in s}$ and $i_{0} \in s$, $b_{i_{0}}(x_{i}, i \in s) - \kappa_{i_{0}}(x_{i}, i \in s) = b(x_{i_{0}}) - \kappa(x_{i_{0}}).$

(B3) For all $s \in \mathcal{P}_f(\mathbb{N})$, $(x_i)_{i \in s}$ and $i_0 \in s$,

$$p_{i_0}(x_i, i \in s) = 0$$
 whenever $|s| = 1$.

(B4) The sequence, $(\tau_n)_{n\geq 1}$, of event times satisfies $\tau_n \to \infty$ as $n \to \infty$.

Define

$$\nu_t^f = \Pi_t^A \Pi_t^B \sum_{i \in S_t} \psi_{T-t} f(X_t^i).$$

• Then the many-to-one formula (1) in the theorem can be written as

$$\nu_0^f = \psi_T f(x) = \mathbf{E}_x \left[\Pi_T^A \Pi_T^B m_T f \right] = \mathbf{E}_x [\nu_T^f].$$

• The idea behind the proof is to find a martingale decomposition for $\nu_T^f - \nu_0^f$.

- (1) then follows by taking expectations.
- (2) follows by studying the L^2 norm of the martingales.

< □ > < □ > < □ > < □ > < □ >

Sketch proof

We can find two martingales $\mathbb M$ and $\mathcal M$ such that

$$\nu_{t}^{f} - \nu_{0}^{f} = \Pi_{t}^{A} \Pi_{t}^{B} (\mathbb{M}_{t} - \mathbb{M}_{\tau_{c_{t}}}) + \sum_{n=1}^{C_{t}} \Pi_{\tau_{n}}^{A} \Pi_{\tau_{n}}^{B} (\mathbb{M}_{\tau_{n}} - \mathbb{M}_{\tau_{n-1}})$$

$$+ \sum_{n=1}^{A_{t}} \Pi_{\rho_{n}}^{A} \Pi_{\rho_{n}}^{B} (\mathcal{M}_{\rho_{n}} - \mathcal{M}_{\rho_{n-1}}) + \sum_{n=1}^{B_{t}} \Pi_{\sigma_{n}}^{A} \Pi_{\sigma_{n}}^{B} (\mathcal{M}_{\sigma_{n}} - \mathcal{M}_{\sigma_{n-1}}). \quad (3)$$
Resampling Selection

- $p = q = 0 \rightsquigarrow$ binary branching process. Then $\Pi_T^A = \Pi_T^B = 1$ a.s., and (1) is the classical many-to-one formula.
- When p = q = 1, we obtain an extension of the (F)FV particle system
- It is possible to let *p* and *q* depend on time.
- The above dynamics allow one to constrain the size of the process to remain between two bounds $0 \le N_{min} \le N_{max}$, $N_{min} \ne 1$, by choosing $p_{i_0}(x_i, i \in s) = 1$ whenever $|s| = N_{min}$, and $q_{i_0}(x_i, i \in s) = 1$ whenever $|s| = N_{max}$. We call this the $N_{min}-N_{max}$ model.

1 Motivation

- A binary branching process
- Existing Monte Carlo methods

2 A binary branching model with Moran interactions (BBMMI)

- The model and main result
- Sketch proof of the main result

3 An example

 $E = \{1, \ldots, M\}$ for some $M \ge 1$. When at $x \in E$, one of the following things may occur:

- the particle jumps with rate x^2 to state
 - max $\{1, x 1\}$ with probability x/(x + 1),
 - min{x + 1, M} with probability 1/(x + 1).

・ロト ・回 ト ・ ヨト ・

 $E = \{1, \ldots, M\}$ for some $M \ge 1$. When at $x \in E$, one of the following things may occur:

- the particle jumps with rate x^2 to state
 - max $\{1, x 1\}$ with probability x/(x + 1),
 - min{x + 1, M} with probability 1/(x + 1).
- at rate b(x) = x, a new particle is produced at the same site, which will continue to evolve independently according to the same dynamics.

- We now consider the problem of numerically approximating ν_M , the left eigenmeasure of the process.
- Fix T > 0 and $N_0 = N_{min} = N_{max}$.
- \mathcal{X}_{N}^{M} = empirical distribution of the $N_{min}-N_{max}$ particle system. \mathcal{Y}_{N}^{M} = the empirical distribution FV particle systems.
- The estimator is $\hat{\theta}_N$, the empirical distribution of the relevant particle system.
- We compare three quantities:
 - the bias of the estimator, $|\mathbb{E}(\hat{ heta}_N(f))
 u_M(f)|$,
 - the standard deviation of the estimator, $\operatorname{Std}(\hat{\theta}_N)$,
 - the number of interaction events, $(A_T + B_T)/T$.

< □ > < □ > < □ > < □ > < □ >

N = 10		$ \mathbb{E}(\hat{ heta}_{N})- u_{M}(f) $	$Std(\hat{ heta}_N)$	$(A_T + B_T)/T$
M = 10	N _{min} -N _{max}	0.08	0.30	14.0
	FV	0.10	0.41	87.2
M = 100	N _{min} -N _{max}	0.08	0.30	14.0
	FV	0.20	0.51	988
M = 1000	N _{min} -N _{max}	0.08	0.30	14.0
	FV	0.22	0.53	9989
$M = +\infty$	N _{min} -N _{max}	0.08	0.30	14.0
	FV	*	*	*

・ロト ・四ト ・ヨト ・ヨト

N = 100		$ \mathbb{E}(\hat{ heta}_{N})- u_{M}(f) $	$Std(\hat{ heta}_N)$	$(A_T + B_T)/T$
M = 10	N _{min} -N _{max}	0.01	0.12	144
	FV	0.02	0.18	857
M = 100	N _{min} -N _{max}	0.01	0.12	144
	FV	0.10	0.39	9866
M = 1000	N _{min} -N _{max}	0.01	0.12	144
	FV	0.20	0.50	99873
$M = +\infty$	N _{min} -N _{max}	0.01	0.12	144
	FV	*	*	*

・ロト ・四ト ・ヨト ・ヨト

"Theorem"

The BBMMI wins!

メロト メタト メヨト メヨト

- Extending the results to more general branching processes
- Scaling limits and genealogical structure
- Central limit theorem
- Branching processes with infinite branching rate
- Relation to adaptive multilevel splitting for rare event simulation

o . . .

Thank you!

メロト メロト メヨト メヨト

Define

$$\mathbb{M}_{t} := \sum_{i \in S_{t}} \psi_{T-t} f(X_{t}^{i}) - \sum_{i \in S_{0}} \psi_{T} f(X_{0}^{i}) - \sum_{n=1}^{A_{t}} \psi_{T-\rho_{n}} f(X_{\rho_{n}}^{i_{n}}) + \sum_{n=1}^{B_{t}} \psi_{T-\sigma_{n}} f(X_{\sigma_{n}}^{i_{n-1}}).$$
(4)

and

$$\begin{split} \mathcal{M}_{\rho_n} - \mathcal{M}_{\rho_n-} &:= \psi_{T-\rho_n} f(X_{\rho_n}^{i_{n-1}}) - \frac{1}{N_{\rho_n} - 1} \sum_{i \in S_{\rho_n-} \setminus \{i_{n-1}'\}} \psi_{T-\rho_n} f(X_{\rho_n}^{i}), \\ \mathcal{M}_{\sigma_n} - \mathcal{M}_{\sigma_{n-}} &:= \frac{1}{N_{\sigma_n} + 1} \left(\sum_{i \in S_{\sigma_n-}} \psi_{T-\sigma_n} f(X_{\sigma_n}^{i}) + \psi_{T-\sigma_n} f(X_{\sigma_n}^{j_{n-1}'}) \right) - \psi_{T-\sigma_n} f(X_{\sigma_n}^{j_{n-1}'}). \end{split}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶