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Network epidemic models

Random graph of possible contacts

Spread epidemic on graph. Interest often focussed on effect of

properties of the random graph on disease dynamics.

In this talk we analyse a model with adaptive dynamics, in which

susceptibles may rewire edges away from infective neighbours.
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Model with preventive rewiring

Population of size n socially structured by an Erdős-Rényi graph

G(n, µ
n
). Between each of the

(

n
2

)

pairs of distinct nodes an edge is

present independently with probability µ
n

, where µ > 1 so giant

component exists for large n.

Markovian SIR (susceptible → infective → recovered) epidemic model

with infection rate λ between neighbours and recovery rate γ.

If a susceptible individual has an infective neighbour then that edge is

rewired (to an individual chosen uniformly at random from the other

n− 2 individuals in the population) at rate ω.

Equivalently, an infective warns their neighbours independently at rate

ω and warned susceptibles rewire such edges.

Initially one infective and all other individuals susceptible.

(Jiang et al. (2019), cf. Britton et al. (2016), Leung et al. (2018))
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Approximating branching process B

The process of infectives in the initial phase of an epidemic can be

approximated by a branching process B in which

the lifetime of an individual ∼ Exp(γ);

at birth an individual is assigned Po(µ) infective edges;

an individual drops each infective edge independently at rate ω

and infects down them independently at rate λ;

when an individual infects down an edge, a new individual is born

and the edge is dropped.

The basic reproduction number R0 for the epidemic is given by the

offspring mean of B, viz.

R0 = µ
λ

λ+ ω + γ
.
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Threshold theorem

Theorem 1 Let T (n) be the final size of the epidemic (i.e. the total

number infected) and T be the total progeny of the branching process B.

(a) T (n) p
−→ T as n → ∞.

(b) lim
n→∞

P(T (n) ≥ logn) = P(T = ∞).

(c) Suppose R0 > 1. Then there exists τ ′ = τ ′(µ, λ, γ, ω) > 0 such that

lim
n→∞

P(n−1T (n) ≥ τ ′|T (n) ≥ logn) = 1.

We say that a major epidemic occurs if T (n) ≥ logn.

In the limit n → ∞, a major epidemic occurs with non-zero probability

if and only if R0 = µλ
λ+ω+γ

> 1.

If all other parameters are held fixed, R0 > 1 ⇐⇒ λ > λC = γ+ω
µ−1 .
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Final outcome of SIR model with rewiring

Final fraction infected in SIR model with rewiring on Erdős-Rényi graph

with 5 initial infectives. Vertical line shows value of λ (= λC ) so that

R0 = 1. Figure based on Jiang et al. (2019), Figure 4.
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Construction of nearly-exact SIR model

Key ideas of construction

Construct epidemic and partial network simultaneously.

Only consider edges from infectives that are connected to

susceptibles.

Only keep track of the number of susceptible-susceptible rewired

edges and not the individuals involved.
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Construction of nearly-exact SIR model

Let S(t), I(t) and W (t) be the numbers of susceptibles, infectives and

susceptible-susceptible rewired edges at time t and let S(t) be the set

of susceptibles at time t.

When an individual is infected it acquires Po(µnS(t)/n) infectious

edges. where µn = µ
(

1− µ
n

)−1
.

Infectious edges send warnings (and the infective loses the edge) at

rate ω. When warning occurs, the edge is “rewired" to a susceptible,

infective or recovered with probabilities
S(t)−1
n−2 ,

I(t)−1
n−2 and

n−S(t)−I(t)
n−2 .

If the rewire is to

a susceptible then W (t) → W (t) + 1;

an infective then that infective gains an infectious edge;

a recovered then nothing further happens.
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Construction of nearly-exact SIR model

Each infectious edge transmits infection at rate λ. Then the edge is

dropped, (S(t), I(t)) → (S(t)− 1, I(t) + 1) and

an individual (i0 say), chosen uniformly at random from S(t−) is

infected and S(t) → S(t) \ {i0};

each other infectious edge is dropped independently with

probability 1
S(t−) ;

individual i0 acquires R ∼ Bin
(

W (t−), 2
S(t−)

)

further (rewired)

infectious edges and W (t) → W (t)−R.

Infectives recover (and lose any remaining infectious edges) at rate γ.

Construction is fully faithful to the original model if there is no multiple

edge.

lim infn→∞ P(no multiple edge) > 0, so convergence in probability

results transfer from construction to original model.
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Construction of nearly-exact SIR model

For t ≥ 0 and j = 0, 1, . . . , let I
(n)
j (t) be the number of infectives with j

infectious edges at time t.

Then X(n) = {(S(n)(t), I
(n)
0 (t), I

(n)
1 (t), . . . ,W (n)(t)) : t ≥ 0} is a

density-dependent continuous-time Markov chain, with an

infinite-dimensional state space, E(n) say, so the LLN in Ethier and

Kurtz (1986) cannot be applied.

Let X(n)(t) = (S(n)(t), I(n)(t), I
(n)
E (t),W (n)(t)), where

I
(n)
E (t) =

∞
∑

j=0

jI
(n)
j (t) is the total number of infectious edges at time t.

Can apply Darling and Norris (2008), Theorem 4.1, to obtain a WLLN

for {X(n)(t) : t ≥ 0}.
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Weak law of large numbers

Theorem 2 Suppose n−1
X

(n)(0)
p

−→ x(0) as n → ∞, where i(0) > 0

and iE(0) > 0. Then, for any t0 > 0,

sup
0≤t≤t0

∣

∣

∣
n−1

X
(n)(t)− x(t)

∣

∣

∣

p
−→ 0 as n → ∞,

where x(t) = (s(t), i(t), iE(t), w(t)) is the solution of the ODE

ds

dt
= −λiE ,

di

dt
= λiE − γi,

diE
dt

= λiE

[

µs+ 2
w

s
− 1−

iE
s

]

− γiE − ωiE(1− i),

dw

dt
= ωiEs− 2λiE

w

s
,

having initial condition x(0) = (s(0), i(0), iE(0), w(0)).
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Illustration of WLLN

100 simulated realisations of trajectories of fraction infected in SIR model

with µ = 5, λ = 1.5, γ = 1, ω = 4 (R0 = 1.1538) and 1% initially infective.

Also shown is the deterministic fraction i(t) (solid curve) and the mean of

the stochastic trajectories (dashed curve).
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Illustration of WLLN
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Upper row: 1% initially infective. Lower row: 5% initially infective
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Final outcome of epidemic

Let ζ(n) = inf{t ≥ 0 : I
(n)
E (t) = 0}, then the final size T (n) of the

epidemic is given by T (n) = n− S(n)(ζ(n)).

To study T (n) it is fruitful to consider the following random time-scale

transformation of X(n) (cf. Watson (1980) and Janson et al. (2014)).

Let ξ = (nS , nI
0, n

I
1, . . . , n

W ) be a typical element of the state space

E(n) of X(n) and nE =
∑∞

k=0 kn
I
k and X̃(n) be the process with jump

rates

q̃(n)(ξ, ξ′) = q(n)(ξ, ξ′)/(λn−1nE) (ξ, ξ′ ∈ E(n), ξ 6= ξ′).

The distribution of final size is invariant to this time transformation. We

use X̃
(n)

= {(X̃(n)(t), Ĩ(n)(t), Ĩ
(n)
E (t), W̃ (n)(t)) : t ≥ 0} to analyse

T (n).
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Time-transformed deterministic approx

The time-transformed deterministic approximation to n−1
X̃

(n)
is

ds̃

dt
= −1,

d̃i

dt
= 1−

γ

λ

ĩ

ĩE
,

d̃iE

dt
= µs̃+ 2

w̃

s̃
− 1−

ĩE

s̃
−

γ

λ
−

ω

λ
(1− ĩ),

dw̃

dt
=

ωs̃

λ
− 2

w̃

s̃
.

Final fraction infected τ = 1− s̃(ζ̃), where ζ̃ = inf{t > 0 : ĩE(t) = 0}. (Note

ζ̃ < ∞, unlike ζ = inf{t > 0 : iE(t) = 0}.)

Problems owing to this system not being Lipschitz in the neighbourhood of

ĩE = 0:

Darling and Norris (2008) Theorem 4.1 cannot be applied.

For epidemics with few initial infectives, τ depends on limt↓0
ĩ(t)

ĩE(t)
.
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Discontinuity at threshold λ = λC

Consider modifications which bound the epidemic process with

rewiring:

a lower bounding process, in which if a susceptible rewires an edge

from one infective to another infective then the edge is dropped;

an upper bounding process, in which if a susceptible rewires an

edge from an infective to a recovered individual then the edge to

the infective is retained.

Both modifications have the same approximating branching process

B, R0 and λC as the original process, and yield time-transformed

deterministic models for (s̃(t), ĩE(t), w̃(t)) that are closed and

Lipschitz.

In a time transformed deterministic model, ĩ′E(0) = 0 ⇐⇒ λ = λC .

The final size is discontinuous (continuous) at λ = λC if ĩ′′E(0) > 0

(< 0) when λ = λC .
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Discontinuity at threshold λ = λC

Theorem 3 Suppose that R0 > 1.

(a) Suppose that ω > γ and µ > 2ω
ω−γ

. Then there exists

τ0 = τ0(µ, γ, ω) > 0 such that, conditional upon a major epidemic,

lim
n→∞

P(n−1T (n) > τ0) = 1 for all λ > λC .

(b) Suppose that 2ω ≤ γ or µ ≤ 3ω
2ω−γ

. Then, for all a > 0, there exists

λ1 > λC such that, conditional upon a major epidemic,

lim
n→∞

P(n−1T (n) < a) = 1 for all λ ∈ (λC , λ1).
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Discontinuity at threshold λ = λC

Theorem 3 Suppose that R0 > 1.

(a) Suppose that ω > γ and µ > 2ω
ω−γ

. Then there exists

τ0 = τ0(µ, γ, ω) > 0 such that, conditional upon a major epidemic,

lim
n→∞

P(n−1T (n) > τ0) = 1 for all λ > λC .

(b) Suppose that 2ω ≤ γ or µ ≤ 3ω
2ω−γ

. Then, for all a > 0, there exists

λ1 > λC such that, conditional upon a major epidemic,

lim
n→∞

P(n−1T (n) < a) = 1 for all λ ∈ (λC , λ1).

Theorem 3′ (Chen, Hou and Yao (2022)). Theorem 3(b) holds if ω ≤ γ or

µ ≤ 2ω
ω−γ

.
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Final outcome of epidemic

Suppose that R0 > 1. For ε ∈ (0, 1), let

xε(t) = (sε(t), iε(t), iεE(t), w
ε(t)) be the solution of the deterministic

model with xε(0) = (1− ε, ε, L−1ε, 0), where L = λ
λ(µ−1)−ω

, and

τ = 1− limε↓0 s
ε(∞).

L is the almost sure limit of I(t)/IE(t) as t → ∞ in the approximating

branching process, conditional upon non-extinction.

Conjecture 1 Conditional upon a major epidemic,

n−1T (n) p
−→ τ as n → ∞.

Proved in Chen, Hou and Yao (2022) when ω ≤ γ or µ ≤ 2ω
ω−γ

, i.e. when

there is not a discontinuity at the threshold λ = λC .
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Final outcome of SIR model with rewiring
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1,000 simulations of final size of SIR epidemic when

n = 10, 000, µ = 5, γ = 1, α = 1 and varying λ; ω = 3
2 in the left panel and

ω = 4 in the right panel. Each simulation was started with 5 infectives.

Solid curves show limiting fraction infected predicted by Conjecture 1.
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SI model

Suppose removal rate γ = 0 so infectives remain so forever, and

I(n)(t) = n− S(n)(t) and i(t) = 1− s(t) for all t ≥ 0.

Time-transformed ODE for (s̃(t), ĩE(t), w̃(t)) is Lipschitz and admits a

closed-form solution.

Theorem 4 (a) Suppose R0 > 1. Then conditional upon a major epidemic,

n
−1

T
(n) p

−→ τ as n → ∞,

where τ = τSI(µ, λ, ω) is the unique solution in (0, 1) of

1− τ = exp

(

−
τ(µλ+ ω)

λ+ 2ω(1− τ)

)

.

(b) Provided ω > 0, τSI(µ, λ, ω) → τ0(µ) as λ ↓ λC (= ω
µ−1

), where

τ0(µ) > 0 ⇐⇒ µ >
3

2
.
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τ0(µ) = limλ↓λC τSI(µ, λ, ω)
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Dependence of final size on ω

Recall that R0 = µλ
λ+ω

. Fix µ > 1, λ > 0 and let ωC = (µ− 1)λ. Then

R0 > 1 ⇐⇒ ω ∈ [0, ωC).

Let µ0 (≈ 1.7564) be the unique solution in [1,∞) of 2µ = eµ−
1

2 . Then

for ω ∈ [0, ωC),

τSI(µ, λ, ω)















decreases with ω if µ < µ0 rewiring beneficial,

constant with ω if µ = µ0 rewiring neutral,

increases with ω if µ > µ0 rewiring harmful.

Note τSI(µ, λ, 0) = size of giant component of Erdős-Rényi graph

G(n, µ
n
) for all λ > 0.
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Final size τSI(µ, λ, ω) when λ = 1

Four regimes are: (a) 1 < µ ≤ 1.5; (b) 1.5 < µ < µ0; (c) µ = µ0; and (d) µ > µ0, where

µ0 > 1 solves 2µ = e
µ− 1

2 .
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Rewiring only to susceptibles

Suppose that when a susceptible rewires an edge away from an

infective, they rewire to an individual chosen uniformly at random from

the other susceptibles.

The deterministic approximation becomes

ds

dt
= −λiE ,

di

dt
= λiE − γi,

diE
dt

= λiE

[

µs+ 2
w

s
− 1−

iE
s

]

− γiE − ωiE ,

dw

dt
= ωiE − 2λiE

w

s
.

The equations for (s, iE , w) form a closed system.
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Rewiring only to susceptibles - final size

The time transformed deterministic model for (s̃(t), ĩE(t), w̃(t)) is

Lipschitz. Its solution with initial condition (s̃(0), ĩE(0), w̃(0)) = (1, 0, 0)

is

s̃(t) = 1− t, ĩE(t) = s̃(t)g̃(s̃(t)), w̃(t) =
ωα

λ
s̃(t)(1− s̃(t)).

where

g̃(s) =

(

1 +
γ − ω

λ

)

log s̃+

(

µ−
2α

λ

)

(1− s̃).

Note that ĩE(t) = 0 ⇐⇒ s̃(t) = 0 or g̃(s̃(t)) = 0.

The equation g̃(s) = 0 has 0 or 1 solution in (0, 1). If it has 0 solution

then, in the model in real time, the final fraction susceptible s(∞) = 0,

otherwise it is given by the solution of g̃(s) = 0 in (0, 1).
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Rewiring only to susceptibles - final size

Theorem 5 Suppose that R0 = µλ
λ+ω+γ

> 1. Then, conditional upon a

major epidemic,

n−1T (n) p
−→ τ̃ = τ̃(µ, λ, γ, ω) as n → ∞,

where

(a) if µ(γ − ω) + 2ω ≥ 0 then, for all λ > λC , τ̃ is given by the unique

solution in (0, 1) of g̃(1− x) = 0, and is continuous at λ = λC ;

(b) if µ(γ − ω) + 2ω < 0 then τ̃ = 1, for λC < λ ≤ ω − γ, and τ̃ is given by

the unique solution in (0, 1) of g̃(1− x) = 0, for λ > ω − γ.
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Final outcome of SIR model with rewiring

2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

s
iz

e
 o

f 
e

p
id

e
m

ic

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

s
iz

e
 o

f 
e

p
id

e
m

ic

1,000 simulations of final size of SIR epidemic with rewiring only to

susceptibles when n = 10, 000, µ = 2.5, γ = 1, α = 1 and varying λ; ω = 4

in the left panel and ω = 10 in the right panel. Each simulation was started

with 10 infectives. Solid curves show limiting fraction infected predicted by

Theorem 5.
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Concluding comments

All results generalise to the model in which warned
susceptibles rewire the edge with probability α ∈ (0, 1)
and drop it otherwise.

Approximating deterministic model is equivalent to a
pair-approximation model.

Extension to other network models, e.g. configuration
model (see Yao and Durrett (2022) for SI model).

R0 < 1 may not prevent a large epidemic unless n is
very large.
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