Epidemics on networks with preventive rewiring

Frank Ball

Frank.Ball@nottingham.ac.uk

University of Nottingham

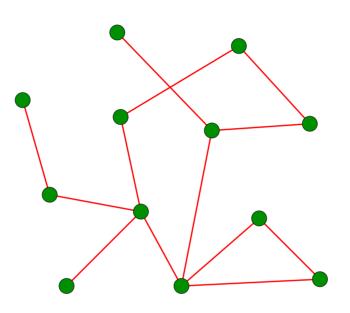
Conference on Branching Processes and Applications, Angers, 24 May 2023

Joint work with Tom Britton (Stockholm University)

Ball, F. and Britton T. (2022) Random Struct. Alg. 61,250-297.

Epidemics on networks with preventive rewiring - p.1

Network epidemic models



- Random graph of possible contacts
- Spread epidemic on graph. Interest often focussed on effect of properties of the random graph on disease dynamics.
- In this talk we analyse a model with adaptive dynamics, in which susceptibles may rewire edges away from infective neighbours.

Model with preventive rewiring

- Population of size *n* socially structured by an Erdős-Rényi graph $G(n, \frac{\mu}{n})$. Between each of the $\binom{n}{2}$ pairs of distinct nodes an edge is present independently with probability $\frac{\mu}{n}$, where $\mu > 1$ so giant component exists for large *n*.
- Markovian SIR (susceptible → infective → recovered) epidemic model with infection rate λ between neighbours and recovery rate γ .
- If a susceptible individual has an infective neighbour then that edge is rewired (to an individual chosen uniformly at random from the other n-2 individuals in the population) at rate ω .
- Equivalently, an infective warns their neighbours independently at rate ω and warned susceptibles rewire such edges.
- Initially one infective and all other individuals susceptible.

(Jiang et al. (2019), cf. Britton et al. (2016), Leung et al. (2018))

Approximating branching process \mathcal{B}

- The process of infectives in the initial phase of an epidemic can be approximated by a branching process *B* in which
 - the lifetime of an individual $\sim Exp(\gamma)$;
 - at birth an individual is assigned $Po(\mu)$ infective edges;
 - an individual drops each infective edge independently at rate ω and infects down them independently at rate λ ;
 - when an individual infects down an edge, a new individual is born and the edge is dropped.
- The basic reproduction number R_0 for the epidemic is given by the offspring mean of \mathcal{B} , viz.

$$R_0 = \mu \frac{\lambda}{\lambda + \omega + \gamma}.$$

Threshold theorem

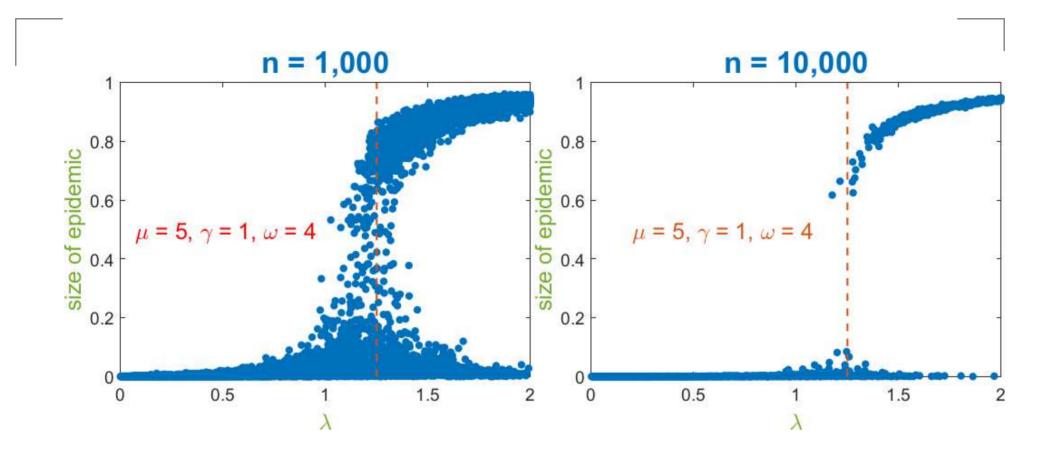
Theorem 1 Let $T^{(n)}$ be the final size of the epidemic (i.e. the total number infected) and T be the total progeny of the branching process \mathcal{B} .

- (a) $T^{(n)} \xrightarrow{p} T$ as $n \to \infty$.
- (b) $\lim_{n \to \infty} P(T^{(n)} \ge \log n) = P(T = \infty).$
- (c) Suppose $R_0 > 1$. Then there exists $\tau' = \tau'(\mu, \lambda, \gamma, \omega) > 0$ such that

$$\lim_{n \to \infty} P(n^{-1}T^{(n)} \ge \tau' | T^{(n)} \ge \log n) = 1.$$

- We say that a major epidemic occurs if $T^{(n)} \ge \log n$.
- In the limit $n \to \infty$, a major epidemic occurs with non-zero probability if and only if $R_0 = \frac{\mu\lambda}{\lambda+\omega+\gamma} > 1$.
- If all other parameters are held fixed, $R_0 > 1 \iff \lambda > \lambda_C = \frac{\gamma + \omega}{\mu 1}$.

Final outcome of SIR model with rewiring



Final fraction infected in SIR model with rewiring on Erdős-Rényi graph with 5 initial infectives. Vertical line shows value of λ (= λ_C) so that $R_0 = 1$. Figure based on Jiang et al. (2019), Figure 4.

Key ideas of construction

- Construct epidemic and partial network simultaneously.
- Only consider edges from infectives that are connected to susceptibles.
- Only keep track of the number of susceptible-susceptible rewired edges and not the individuals involved.

- Let S(t), I(t) and W(t) be the numbers of susceptibles, infectives and susceptible-susceptible rewired edges at time t and let S(t) be the set of susceptibles at time t.
- When an individual is infected it acquires $Po(\mu_n S(t)/n)$ infectious edges. where $\mu_n = \mu \left(1 \frac{\mu}{n}\right)^{-1}$.
- Infectious edges send warnings (and the infective loses the edge) at rate ω . When warning occurs, the edge is "rewired" to a susceptible, infective or recovered with probabilities $\frac{S(t)-1}{n-2}$, $\frac{I(t)-1}{n-2}$ and $\frac{n-S(t)-I(t)}{n-2}$. If the rewire is to
 - a susceptible then $W(t) \rightarrow W(t) + 1$;
 - an infective then that infective gains an infectious edge;
 - a recovered then nothing further happens.

- Each infectious edge transmits infection at rate λ . Then the edge is dropped, $(S(t), I(t)) \rightarrow (S(t) 1, I(t) + 1)$ and
 - an individual (i_0 say), chosen uniformly at random from S(t-) is infected and $S(t) \rightarrow S(t) \setminus \{i_0\}$;
 - each other infectious edge is dropped independently with probability $\frac{1}{S(t-)}$;
 - Individual *i*₀ acquires *R* ∼ Bin $\left(W(t-), \frac{2}{S(t-)}\right)$ further (rewired)
 infectious edges and *W*(*t*) → *W*(*t*) − *R*.
- Infectives recover (and lose any remaining infectious edges) at rate γ .
- Construction is fully faithful to the original model if there is no multiple edge.
 - $\liminf_{n\to\infty} P(\text{no multiple edge}) > 0$, so convergence in probability results transfer from construction to original model.

■ For $t \ge 0$ and j = 0, 1, ..., let $I_j^{(n)}(t)$ be the number of infectives with j infectious edges at time t.

- Then $X^{(n)} = \{(S^{(n)}(t), I_0^{(n)}(t), I_1^{(n)}(t), \dots, W^{(n)}(t)) : t ≥ 0\}$ is a density-dependent continuous-time Markov chain, with an infinite-dimensional state space, $E^{(n)}$ say, so the LLN in Ethier and Kurtz (1986) cannot be applied.
- Let $\mathbf{X}^{(n)}(t) = (S^{(n)}(t), I^{(n)}(t), I_E^{(n)}(t), W^{(n)}(t))$, where $I_E^{(n)}(t) = \sum_{j=0}^{\infty} j I_j^{(n)}(t)$ is the total number of infectious edges at time t.
- Can apply Darling and Norris (2008), Theorem 4.1, to obtain a WLLN for $\{X^{(n)}(t) : t \ge 0\}$.

Weak law of large numbers

Theorem 2 Suppose $n^{-1} \mathbf{X}^{(n)}(0) \xrightarrow{p} \mathbf{x}(0)$ as $n \to \infty$, where i(0) > 0 and $i_E(0) > 0$. Then, for any $t_0 > 0$,

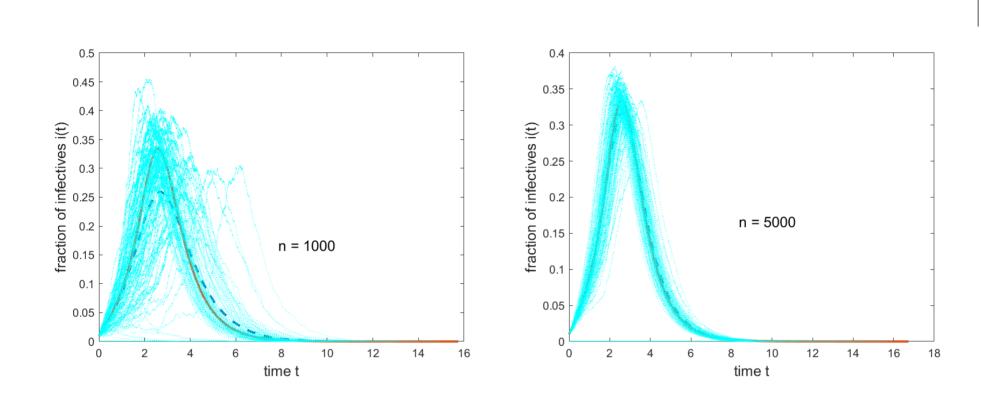
$$\sup_{0 \le t \le t_0} \left| n^{-1} \boldsymbol{X}^{(n)}(t) - \boldsymbol{x}(t) \right| \stackrel{p}{\longrightarrow} 0 \quad \text{as } n \to \infty,$$

where $\boldsymbol{x}(t) = (s(t), i(t), i_E(t), w(t))$ is the solution of the ODE

$$\begin{split} &\frac{ds}{dt} = -\lambda i_E, \\ &\frac{di}{dt} = \lambda i_E - \gamma i, \\ &\frac{di_E}{dt} = \lambda i_E \left[\mu s + 2\frac{w}{s} - 1 - \frac{i_E}{s} \right] - \gamma i_E - \omega i_E (1 - i), \\ &\frac{dw}{dt} = \omega i_E s - 2\lambda i_E \frac{w}{s}, \end{split}$$

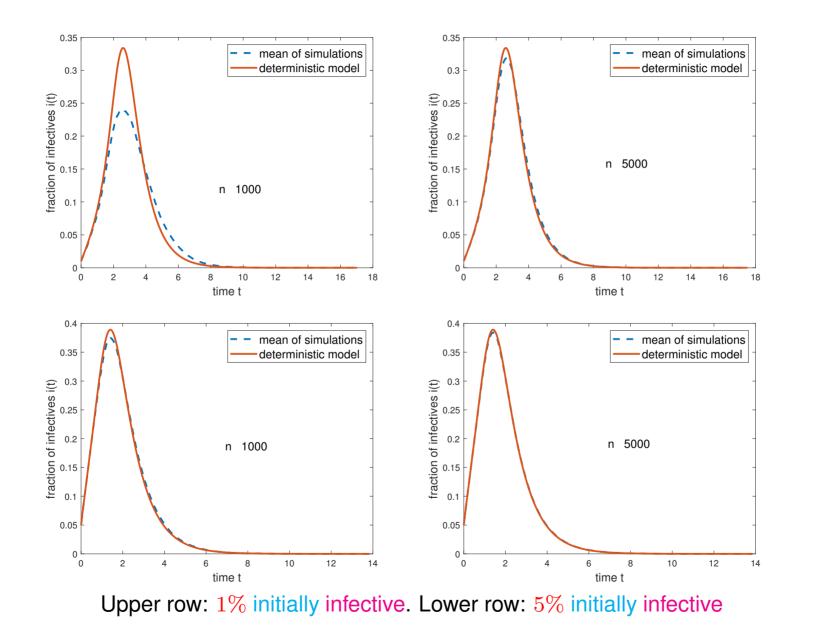
having initial condition $\boldsymbol{x}(0) = (s(0), i(0), i_E(0), w(0)).$

Illustration of WLLN



100 simulated realisations of trajectories of fraction infected in SIR model with $\mu = 5$, $\lambda = 1.5$, $\gamma = 1$, $\omega = 4$ ($R_0 = 1.1538$) and 1% initially infective. Also shown is the deterministic fraction i(t) (solid curve) and the mean of the stochastic trajectories (dashed curve).

Illustration of WLLN



Final outcome of epidemic

■ Let $\zeta^{(n)} = \inf\{t \ge 0 : I_E^{(n)}(t) = 0\}$, then the final size $T^{(n)}$ of the epidemic is given by $T^{(n)} = n - S^{(n)}(\zeta^{(n)})$.

To study $T^{(n)}$ it is fruitful to consider the following random time-scale transformation of $X^{(n)}$ (cf. Watson (1980) and Janson et al. (2014)).

• Let $\xi = (n^S, n_0^I, n_1^I, \dots, n^W)$ be a typical element of the state space $E^{(n)}$ of $X^{(n)}$ and $n^E = \sum_{k=0}^{\infty} k n_k^I$ and $\tilde{X}^{(n)}$ be the process with jump rates

$$\tilde{q}^{(n)}(\xi,\xi') = q^{(n)}(\xi,\xi')/(\lambda n^{-1}n^E) \qquad (\xi,\xi' \in E^{(n)}, \xi \neq \xi').$$

• The distribution of final size is invariant to this time transformation. We use $\tilde{X}^{(n)} = \{ (\tilde{X}^{(n)}(t), \tilde{I}^{(n)}(t), \tilde{I}^{(n)}_E(t), \tilde{W}^{(n)}(t)) : t \ge 0 \}$ to analyse $T^{(n)}$.

Time-transformed deterministic approx

The time-transformed deterministic approximation to $n^{-1} \tilde{X}^{(n)}$ is

$$\begin{split} &\frac{d\tilde{s}}{dt} = -1, \\ &\frac{d\tilde{i}}{dt} = 1 - \frac{\gamma}{\lambda} \frac{\tilde{i}}{\tilde{i}_E}, \\ &\frac{d\tilde{i}_E}{dt} = \mu \tilde{s} + 2\frac{\tilde{w}}{\tilde{s}} - 1 - \frac{\tilde{i}_E}{\tilde{s}} - \frac{\gamma}{\lambda} - \frac{\omega}{\lambda}(1 - \tilde{i}), \\ &\frac{d\tilde{w}}{dt} = \frac{\omega \tilde{s}}{\lambda} - 2\frac{\tilde{w}}{\tilde{s}}. \end{split}$$

- Final fraction infected $\tau = 1 \tilde{s}(\tilde{\zeta})$, where $\tilde{\zeta} = \inf\{t > 0 : \tilde{i}_E(t) = 0\}$. (Note $\tilde{\zeta} < \infty$, unlike $\zeta = \inf\{t > 0 : i_E(t) = 0\}$.)
- Problems owing to this system not being Lipschitz in the neighbourhood of $\tilde{i}_E = 0$:
 - Darling and Norris (2008) Theorem 4.1 cannot be applied.
 - For epidemics with few initial infectives, τ depends on $\lim_{t \downarrow 0} \frac{\tilde{i}(t)}{\tilde{i}_T(t)}$.

Discontinuity at threshold $\lambda = \lambda_C$

- Consider modifications which bound the epidemic process with rewiring:
 - a lower bounding process, in which if a susceptible rewires an edge from one infective to another infective then the edge is dropped;
 - an upper bounding process, in which if a susceptible rewires an edge from an infective to a recovered individual then the edge to the infective is retained.
- Both modifications have the same approximating branching process \mathcal{B} , R_0 and λ_C as the original process, and yield time-transformed deterministic models for $(\tilde{s}(t), \tilde{i}_E(t), \tilde{w}(t))$ that are closed and Lipschitz.
- In a time transformed deterministic model, $\tilde{i}'_E(0) = 0 \iff \lambda = \lambda_C$. The final size is discontinuous (continuous) at $\lambda = \lambda_C$ if $\tilde{i}''_E(0) > 0$ (< 0) when $\lambda = \lambda_C$.

Discontinuity at threshold $\lambda = \lambda_C$

Theorem 3 Suppose that $R_0 > 1$.

(a) Suppose that $\omega > \gamma$ and $\mu > \frac{2\omega}{\omega - \gamma}$. Then there exists $\tau_0 = \tau_0(\mu, \gamma, \omega) > 0$ such that, conditional upon a major epidemic,

 $\lim_{n \to \infty} P(n^{-1}T^{(n)} > \tau_0) = 1 \quad \text{for all } \lambda > \lambda_C.$

(b) Suppose that $2\omega \leq \gamma$ or $\mu \leq \frac{3\omega}{2\omega - \gamma}$. Then, for all a > 0, there exists $\lambda_1 > \lambda_C$ such that, conditional upon a major epidemic,

$$\lim_{n \to \infty} P(n^{-1}T^{(n)} < a) = 1 \quad \text{for all } \lambda \in (\lambda_C, \lambda_1).$$

Discontinuity at threshold $\lambda = \lambda_C$

Theorem 3 Suppose that $R_0 > 1$.

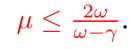
(a) Suppose that $\omega > \gamma$ and $\mu > \frac{2\omega}{\omega - \gamma}$. Then there exists $\tau_0 = \tau_0(\mu, \gamma, \omega) > 0$ such that, conditional upon a major epidemic,

 $\lim_{n \to \infty} P(n^{-1}T^{(n)} > \tau_0) = 1 \quad \text{for all } \lambda > \lambda_C.$

(b) Suppose that $2\omega \leq \gamma$ or $\mu \leq \frac{3\omega}{2\omega - \gamma}$. Then, for all a > 0, there exists $\lambda_1 > \lambda_C$ such that, conditional upon a major epidemic,

$$\lim_{n \to \infty} P(n^{-1}T^{(n)} < a) = 1 \quad \text{for all } \lambda \in (\lambda_C, \lambda_1).$$

Theorem 3' (Chen, Hou and Yao (2022)). Theorem 3(b) holds if $\omega \leq \gamma$ or



Final outcome of epidemic

• Suppose that $R_0 > 1$. For $\varepsilon \in (0, 1)$, let $x^{\varepsilon}(t) = (s^{\varepsilon}(t), i^{\varepsilon}(t), i^{\varepsilon}_E(t), w^{\varepsilon}(t))$ be the solution of the deterministic model with $x^{\varepsilon}(0) = (1 - \varepsilon, \varepsilon, L^{-1}\varepsilon, 0)$, where $L = \frac{\lambda}{\lambda(\mu - 1) - \omega}$, and $\tau = 1 - \lim_{\varepsilon \downarrow 0} s^{\varepsilon}(\infty)$.

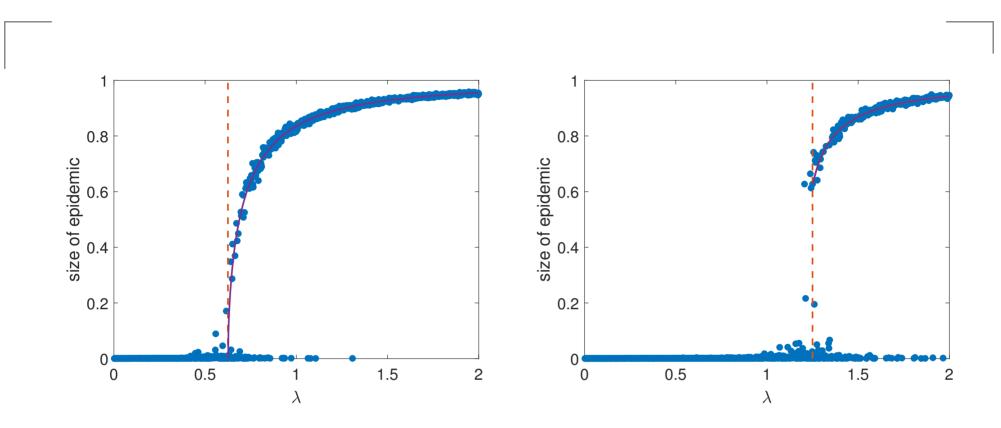
■ L is the almost sure limit of $I(t)/I_E(t)$ as $t \to \infty$ in the approximating branching process, conditional upon non-extinction.

Conjecture 1 Conditional upon a major epidemic,

 $n^{-1}T^{(n)} \xrightarrow{p} \tau$ as $n \to \infty$.

Proved in Chen, Hou and Yao (2022) when $\omega \leq \gamma$ or $\mu \leq \frac{2\omega}{\omega - \gamma}$, i.e. when there is not a discontinuity at the threshold $\lambda = \lambda_C$.

Final outcome of SIR model with rewiring



1,000 simulations of final size of SIR epidemic when $n = 10,000, \mu = 5, \gamma = 1, \alpha = 1$ and varying $\lambda; \omega = \frac{3}{2}$ in the left panel and $\omega = 4$ in the right panel. Each simulation was started with 5 infectives. Solid curves show limiting fraction infected predicted by Conjecture 1.

SI model

Suppose removal rate $\gamma = 0$ so infectives remain so forever, and $I^{(n)}(t) = n - S^{(n)}(t)$ and i(t) = 1 - s(t) for all $t \ge 0$.

Time-transformed ODE for $(\tilde{s}(t), \tilde{i}_E(t), \tilde{w}(t))$ is Lipschitz and admits a closed-form solution.

Theorem 4 (a) Suppose $R_0 > 1$. Then conditional upon a major epidemic,

 $n^{-1}T^{(n)} \xrightarrow{p} \tau$ as $n \to \infty$,

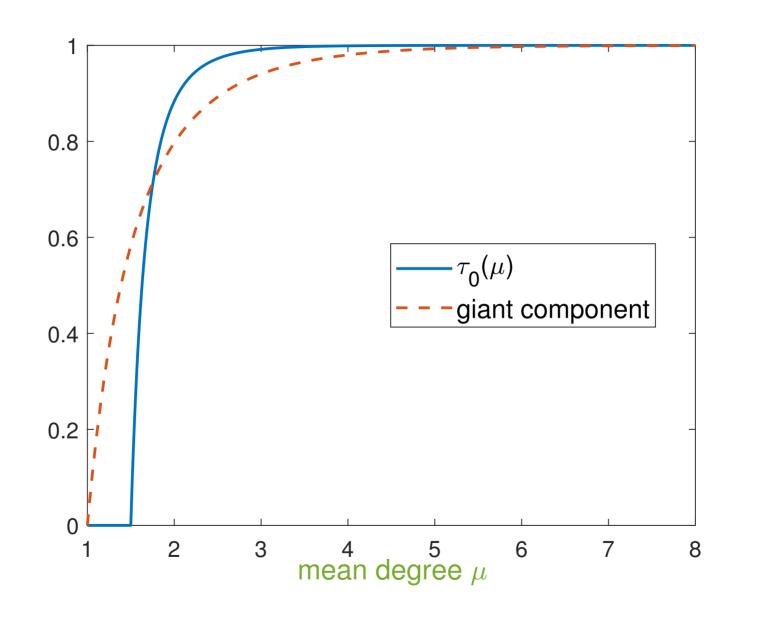
where $\tau = \tau_{\rm SI}(\mu, \lambda, \omega)$ is the unique solution in (0, 1) of

$$1 - \tau = \exp\left(-\frac{\tau(\mu\lambda + \omega)}{\lambda + 2\omega(1 - \tau)}\right)$$

(b) Provided $\omega > 0$, $\tau_{SI}(\mu, \lambda, \omega) \to \tau_0(\mu)$ as $\lambda \downarrow \lambda_C$ (= $\frac{\omega}{\mu - 1}$), where

$$au_0(\mu) > 0 \iff \mu > \frac{3}{2}.$$

 $\tau_0(\mu) = \lim_{\lambda \downarrow \lambda_C} \tau_{\rm SI}(\mu, \lambda, \omega)$



Dependence of final size on ω

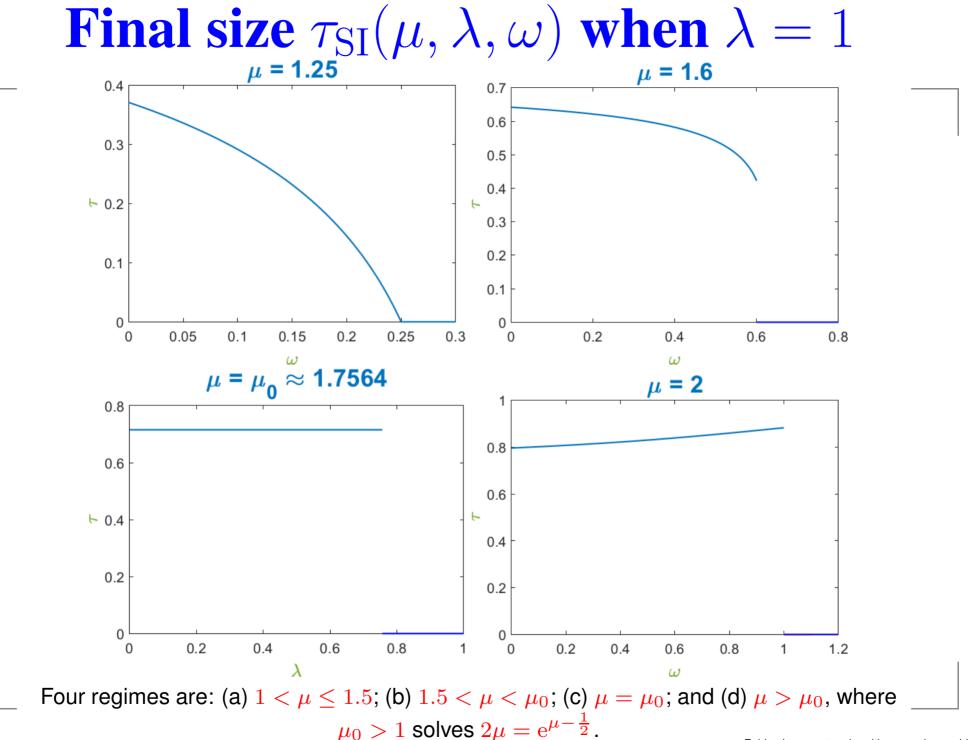
• Recall that $R_0 = \frac{\mu\lambda}{\lambda+\omega}$. Fix $\mu > 1, \lambda > 0$ and let $\omega_C = (\mu - 1)\lambda$. Then

 $R_0 > 1 \iff \omega \in [0, \omega_C).$

▲ Let $\mu_0 \ (\approx 1.7564)$ be the unique solution in $[1,\infty)$ of $2\mu = e^{\mu - \frac{1}{2}}$. Then for $\omega \in [0,\omega_C)$,

 $\tau_{\rm SI}(\mu,\lambda,\omega) \begin{cases} \text{decreases with } \omega & \text{if } \mu < \mu_0 & \text{rewiring beneficial,} \\ \text{constant with } \omega & \text{if } \mu = \mu_0 & \text{rewiring neutral,} \\ \text{increases with } \omega & \text{if } \mu > \mu_0 & \text{rewiring harmful.} \end{cases}$

Note $\tau_{SI}(\mu, \lambda, 0) =$ size of giant component of Erdős-Rényi graph $G(n, \frac{\mu}{n})$ for all $\lambda > 0$.



Epidemics on networks with preventive rewiring - p.24

Rewiring only to susceptibles

- Suppose that when a susceptible rewires an edge away from an infective, they rewire to an individual chosen uniformly at random from the other susceptibles.
- The deterministic approximation becomes

$$\begin{aligned} \frac{ds}{dt} &= -\lambda i_E, \\ \frac{di}{dt} &= \lambda i_E - \gamma i, \\ \frac{di_E}{dt} &= \lambda i_E \left[\mu s + 2\frac{w}{s} - 1 - \frac{i_E}{s} \right] - \gamma i_E - \omega i_E, \\ \frac{dw}{dt} &= \omega i_E - 2\lambda i_E \frac{w}{s}. \end{aligned}$$

The equations for (s, i_E, w) form a closed system.

Rewiring only to susceptibles - final size

The time transformed deterministic model for $(\tilde{s}(t), \tilde{i}_E(t), \tilde{w}(t))$ is Lipschitz. Its solution with initial condition $(\tilde{s}(0), \tilde{i}_E(0), \tilde{w}(0)) = (1, 0, 0)$ is

$$\tilde{s}(t) = 1 - t, \quad \tilde{i}_E(t) = \tilde{s}(t)\tilde{g}(\tilde{s}(t)), \quad \tilde{w}(t) = \frac{\omega\alpha}{\lambda}\tilde{s}(t)(1 - \tilde{s}(t)).$$

where

$$\tilde{g}(s) = \left(1 + \frac{\gamma - \omega}{\lambda}\right)\log \tilde{s} + \left(\mu - \frac{2\alpha}{\lambda}\right)(1 - \tilde{s}).$$

- Note that $\tilde{i}_E(t) = 0 \iff \tilde{s}(t) = 0$ or $\tilde{g}(\tilde{s}(t)) = 0$.
- The equation $\tilde{g}(s) = 0$ has 0 or 1 solution in (0, 1). If it has 0 solution then, in the model in real time, the final fraction susceptible $s(\infty) = 0$, otherwise it is given by the solution of $\tilde{g}(s) = 0$ in (0, 1).

Rewiring only to susceptibles - final size

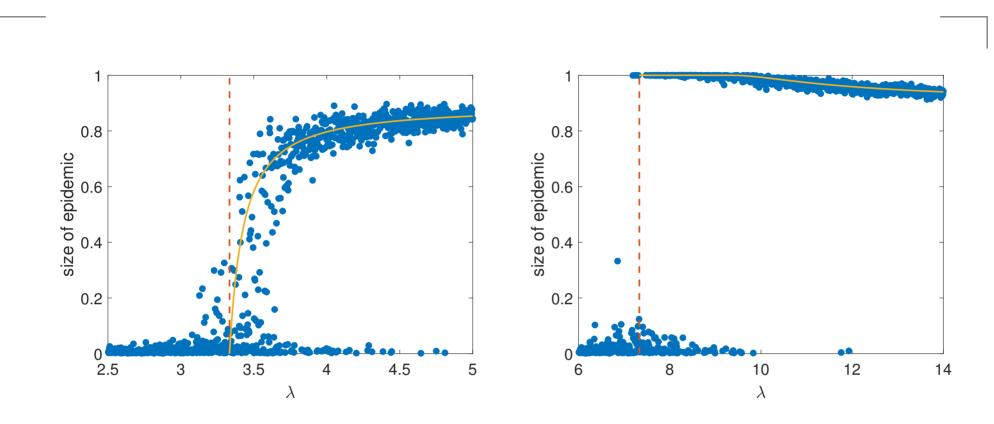
Theorem 5 Suppose that $R_0 = \frac{\mu\lambda}{\lambda+\omega+\gamma} > 1$. Then, conditional upon a major epidemic,

$$n^{-1}T^{(n)} \xrightarrow{p} \tilde{\tau} = \tilde{\tau}(\mu, \lambda, \gamma, \omega) \quad \text{as } n \to \infty,$$

where

- (a) if $\mu(\gamma \omega) + 2\omega \ge 0$ then, for all $\lambda > \lambda_C$, $\tilde{\tau}$ is given by the unique solution in (0, 1) of $\tilde{g}(1 x) = 0$, and is continuous at $\lambda = \lambda_C$;
- (b) if $\mu(\gamma \omega) + 2\omega < 0$ then $\tilde{\tau} = 1$, for $\lambda_C < \lambda \le \omega \gamma$, and $\tilde{\tau}$ is given by the unique solution in (0, 1) of $\tilde{g}(1 x) = 0$, for $\lambda > \omega \gamma$.

Final outcome of SIR model with rewiring



1,000 simulations of final size of SIR epidemic with rewiring only to susceptibles when $n = 10,000, \mu = 2.5, \gamma = 1, \alpha = 1$ and varying $\lambda; \omega = 4$ in the left panel and $\omega = 10$ in the right panel. Each simulation was started with 10 infectives. Solid curves show limiting fraction infected predicted by Theorem 5.

Concluding comments

- ▲ All results generalise to the model in which warned susceptibles rewire the edge with probability $\alpha \in (0, 1)$ and drop it otherwise.
- Approximating deterministic model is equivalent to a pair-approximation model.
- Extension to other network models, e.g. configuration model (see Yao and Durrett (2022) for SI model).
- $R_0 < 1$ may not prevent a large epidemic unless n is very large.

References

- Ball, F. and Britton, T. (2022) Epidemics on networks with preventive rewiring. *Random Structures and Algorithms* **61**, 250–297.
- Britton, T., Juher, D. and Saldaña, J. (2016) A network epidemic model with preventive rewiring: comparative analysis of the initial phase. *Bull. Math. Biol.* **78**, 2427–2454.
- Chen, W., Hou, Y. and Yao, D. (2022) SIR epidemics on evolving Erdős-Rényi graphs. *arXiv*:2208.11923v1.
- Darling, R. W. R. and Norris, J. R. (2008) Differential equation approximations for Markov chains. *Probability Surveys* **5**, 37–79.
- Ethier, S. N. and Kurtz, T. G. (1986) *Markov Processes: Characterization and Convergence*. Wiley, New York.
- Janson, S., Luczak, M. and Windridge, P. (2014) Law of large numbers for the SIR epidemic on a random graph with given degrees. *Random Structures and Algorithms* **45**, 726–763.
- Jiang, Y., Kassem, R., York, G., Junge, M. and Durrett, D. (2019) SIR epidemics on evolving graphs. arXiv:1901.06568v1.
- Leung, K., Ball, F., Sirl, D. and Britton, T. (2018). Individual preventive social distancing during an epidemic may have negative population-level outcomes. *J. R. Soc. Interface* **15**:20180296.
- Watson, R. (1980) A useful random time-scale transformation for the standard epidemic model. *J. Appl. Prob.* **17**, 324–332.
- Yao, D. and Durrett, R. (2022) Susceptible-infected epidemics on evolving graphs. *Electron. J. Probab.* **27**, 1–66.