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Reminder: Linear fractional distributions

The linear fractional distribution LF(a,b), with parameters
a,b > 0, a + b ≥ 1, is a mixture of a point mass at 0 and a
geometric distribution on the positive integers N, denoted
Geom+. More precisely,

LF(a,b) = a+b−1
a+b δ0 + 1

a+b Geom+

(
a

a+b

)
.

It has generating function (g.f.)

f (s) =
a + (b − 1)(1− s)

a + b(1− s)
= 1−

[
a

1− s
+ b

]−1

,

mean m = a−1 and variance a−2(2b + a− 1).

It is a pure geometric law iff a + b = 1, namely

LF(a,1− a) = Geom+(a).
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A generalization: Power fractional distributions

The power fractional distribution PF(θ,a,b) has three
parameters, viz.

θ ∈ (0,1], and a,b > 0, a + b ≥ 1,

and g.f. f of the form

f (s) = 1−
[

a
(1− s)θ

+ b
]−1/θ

, s ∈ [0, γ).

It was first introduced by Sagitov and Lindo [2] as part of a
larger class of distributions (with even four parameters and
θ ∈ [−1,1]).
Their goal: To give more general class of g.f.’s that are
stable under iteration. (will return to this)
The linear fractional distribution LF(a,b) appears as a
special case: LF(a,b) = PF(1,a,b).
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A generalization: Power fractional distributions

The first derivative of f equals

f ′(s) = a
[

1
a + b(1− s)θ

](θ+1)/θ

, s ∈ [0, γ),

giving f ′(1) = a−1/θ.
for θ ∈ (0,1), all higher order derivatives at 1 are infinite!
Confirmed by the following result about counting density
and tails:
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Power law tails for 0 < θ < 1

Power fractional distributions PF(θ,a,b) with 0 < θ < 1 exhibit
power law tail behavior (of order 1 + θ):

Let (pn)n≥0 = PF(θ,a,b) for 0 < θ < 1 and a,b > 0 such that
a + b ≥ 1. Then

(1) pn � n−(2+θ) as n→∞.

If a/(a + b) < θ, then (n(n − 1)pn)n≥2 is decreasing and

(2) pn ' cn−(2+θ) as n→∞,

where c = a−(θ+1)/θb(θ + 1)/Γ(1− θ).
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The Sibuya distribution

The Sibuya distribution Sib(a) for a ∈ (0,1), named after
Sibuya [4], has support N, mean m =∞, and g.f.

f (s) = 1− (1− s)a, s ∈ [0,1].

It appears as a particular power-fractional law with θ = 0 (not
immediate, limiting case not discussed here).

Mentioned here because ...

A Sibuya sum of iid power fractionals has the same law as a
linear fractional sum of iid Sibuyas
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A distributional relation

Here is the precise statement:

Fixing any θ ∈ (0,1) and a,b > 0 with a + b ≥ 1, the relation

S∑
k=1

Xk
d
=

Y∑
k=1

Sk

holds true for independent r.v.’s X ,Y and Xn,Sn, n = 1,2, . . .,
such that

the law of X ,X1,X2, . . . is PF(θ,a,b) (with g.f. f ),
the law of Y is LF(a,b) (with g.f. g),
and the law of S,S1,S2, . . . is Sib(θ) (with g.f. h).

In terms of g.f.’s, the relation reads

h ◦ f = g ◦ h, or f = h−1 ◦ g ◦ h.

Therefore, PF(θ,a,b) may be called a conjugation of LF(a,b)
by means of a Sibuya law.
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Stability under iteration

The g.f. f of PF(θ,a,b) satisfies the equation

1
(1− f (s))θ

=
a

(1− s)θ
+ b

and does indeed show stability under iteration. For n = 2, we
find for f 2(s) = f (f (s)) that

1
(1− f (f (s)))θ

=
a

(1− f (s))θ
+ b = a

(
a

(1− s)θ
+ b

)
+ b

=
a 2

(1− s)θ
+ ab + b

and then for general n ≥ 2

1
(1− f n(s))θ

=
an

(1− s)θ
+ an−1b + an−2b + . . .+ ab + b
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Stability under iteration

For two not necessarily identical power fractional g.f.’s
f ∼ PF(θ,a,b) and g ∼ PF(θ, c,d), one finds accordingly

1
(1− f (g(s)))θ

=
ac

(1− s)θ
+ ad + b

Observation: The parameter evolution does not depend on θ
and is therefore the same as in the linear fractional case.

In terms of random variables, the above identity means that,
given independent Y d

= PF(θ,a,b) and Xk
d
= PF(θ, c,d) for

k ∈ N,

Y∑
k=1

Xk
d
= PF(θ,ac,ad + b)
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GWP with power fractional offspring law

Consequence: if (Zn)n≥0 is a GWP with offspring law PF(θ.a,b)
and Z0 = 1, then

Zn
d
= PF

(
θ,an,

n∑
k=1

ak−1b

)
= PF

(
θ,an,

b(an − 1)

a− 1

)
in the noncritical case a 6= 1, and

Zn
d
= PF (θ,1,bn)

in the critical case a = 1.

Extinction probability in the supercritical case a < 1:

q = 1 −
(

1− a
b

)1/θ

.
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Supercritical GWP with power fractional offspring law

The normalized sequence and L1+-bounded martingale

Wn :=
Zn

EZn
= an/θZn, n ≥ 0

converges a.s. to a random variable W with P(W = 0) = q and
Laplace transform

ϕ(u) = Ee−uW∞ = 1 −
[

1
uθ

+
b

1− a

]−1/θ

, u ≥ 0.

The associated distribution is called continuous power
fractional law and abbreviated CPF. Notice that

1
(1− ϕ(u))θ

=
1
uθ

+
b

1− a
.
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Continuous power fractional laws

This suggests to define CPF(θ, α, β) for θ ∈ (0,1], α > 0 and
β ≥ 1 as the distribution on [0,∞) with Laplace transform ϕ
satisfying

1
(1− ϕ(u))θ

=
α

uθ
+ β

or, equivalently,

ϕ(u) = (1− β−1/θ) + β−1/θ

[
1−

(
1− α/β

uθ + α/β

)1/θ
]

︸ ︷︷ ︸
=:CPF+(θ,α/β)

,

which in turn means that

CPF(θ, α, β) = (1− β)−1/θδ0 + β−1/θCPF+(θ, α/β).

Gerold Alsmeyer Power fractional laws in branching models



Continuous power fractional laws

The case θ = 1 leads to continuous linear fractional laws:

CLF(α, β) := CPF(1, α, β) = (1− β)δ0 + β Exp(α).

Finally, the result about the martingale limit W can now be
restated as

W d
= CPF(θ,1,b(1− a)−1).

Essentially unique and endogenous solution to the SFPE

Y d
= a1/θ

N∑
k=1

Yk

with N d
= PF(θ,a,b) independent of Y1,Y2, . . . which in turn are

independent copies of Y .
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Critical GWP with power fractional offspring law

In the critical case a = 1 with offspring law PF(θ,1,b), the
following assertions are notable:

lim
n→∞

n1/θ P(Zn > 0) = b−1/θ,

lim
n→∞

n−1/θ E(Zn|Zn > 0) = b1/θ,

and

P
(

Zn

(bn)1/θ ∈ ·
∣∣∣∣Zn > 0

)
w→ CPF+(θ,1).

In the linear fractional case θ = 1, the offspring variance equals
2b.
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Branching in varying PF environment

Explicit iteration is still possible when switching to branching in
varying power fractional environment for fixed θ!

If (Zn)n≥0 is a GWPVE with offspring laws PF(θ,ak ,bk ),
offspring g.f.’s fk and Z0 = 1, then Zn has g.f. f1 ◦ f2 ◦ · · · ◦ fk and
law

PF

θ, n∏
k=1

ak ,

n∑
k=1

(
k−1∏
j=1

aj

)
bk
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Branching in varying PF environment

Interesting fact (not really new): Induced parameter evolution
defines a deterministic walk on the affine linear group R> × R
with (non-commutative) multiplication

(a,b) · (c,d) = (ac,ad + b).

Leads to random affine recursions and perpetuities when the
environment becomes random, here

i.i.d. (A1,B1, (A2,B2) . . .
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Branching in PF random environment

(Zn)n≥0 a GWP in i.i.d. power fractional random
environment

e = (en)n≥1, where en = (An,Bn).

Means that the quenched offspring law of individuals in
generation n − 1 is PF(θ,An,Bn) with random g.f. fn.
A,B > 0 and A + B ≥ 1 a.s.
Putting P = P(·|e), we then have a.s.

L(Zn|e) = P(Zn ∈ ·) = PF(θ,Πn,Rn),

where

(Πn,Rn) :=

(
n∏

k=1

Ak ,

n∑
k=1

Πk−1Bk

)

for n ∈ N.
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A quick note on extinction

qn(e1:n) := P(Zn = 0|e1:n) = 1− 1
(Πn + Rn)1/θ

q(e) := lim
n→∞

qn(e1:n) = 1− 1
limn→∞(Πn + Rn)1/θ
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Random affine recursions

Here are some basic facts about IFS generated by affine linear
random functions gn(x) = Anx + Bn with i.i.d. positive random
coefficients An,Bn:

Forward iterations : gn:1(x) = gn ◦ . . . ◦ g1(x).

Backward iterations : g1:n(x) = g1 ◦ . . . ◦ gn(x).

They have identical marginals:

gn:1(x)
d
= g1:n(x) for all n ≥ 1.

Forward iterations form a Markov chain which is asymptotically
stable iff the (strictly increasing) backward iterations converge
a.s. to a finite limit, which is given by

R∞ :=
∑
k≥1

Πk−1Bk

and called perpetuity.
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Random affine recursions

Exact conditions for the a.s. convergence

Rn :=
n∑

k=1

Πk−1Bk
n→∞−−−→ R∞

were given by Goldie & Maller [1]. Details not stated here, but
essential condition (not surprising) is

Πn → 0 a.s.

In the given branching context, where A,B > 0 and A + B ≥ 1
must additionally hold, it easily follows that

R∞ ≥ 1 a.s.
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A duality result if Πn →∞ a.s.

Defining g(−1)
n (x) := A−1

n x + A−1
n Bn for n ∈ N (which is not the

inverse of gn), the duality relation

Rn

Πn
=

g1:n(0)

Πn
= g(−1)

n:1 (0)
d
= g(−1)

1:n (0)

=
n∑

k=1

Π−1
k Bk =: R(−1)

n

holds for all n ∈ N. Moreover,

Πn → ∞ a.s.

plus further conditions (again omitted) imply

R(−1)
∞ :=

∑
k≥1

Π−1
k Bk < ∞ a.s.

and
Rn

Πn

d→ R(−1)
∞ .
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Back to branching in power fractional RE

Criticality classification embarks on the following trichotomy:

(C1) R∞ <∞ = R(−1)
∞ a.s.

(C2) R(−1)
∞ <∞ = R∞ a.s.

(C3) R∞ = R(−1)
∞ =∞ a.s.

which in turn can be further characterized precisely in terms of
A and B. We refrain from giving details, but based on this the
following classification becomes reasonable:

(Zn)n≥0 is called
supercritical under (C1);
subcritical under (C2);
critical/strongly critical under (C3), with a finer description
omitted here.
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Branching in power fractional RE

Note that the quenched logarithmic mean

log EZn = −1
θ

log Πn = −1
θ

n∑
k=1

log Ak =:
1
θ

Sn, n ≥ 0

defines an ordinary random walk that can exhibit one of four
fluctuation types, depending on the law of A. If E log A exists,
we have the following classification: (Zn)n≥0 is called

subcritical if E log A > 0,
critical if E log A = 0 and P(A 6= 1) > 0,

strongly critical if A = 1 a.s.,
supercritical if E log A < 0.

Gerold Alsmeyer Power fractional laws in branching models



Back to branching in random environment

Assumptions and notation:
(Zn)n≥0 a GWP in i.i.d. power fractional environment

e = (en)n≥1, where en = (An,Bn).

This means that the quenched offspring law of individuals
in generation n − 1 is PF(θ,An,Bn) with random g.f. fn.
A,B > 0 and A + B ≥ 1 a.s.
We put ek :l = (ek , . . . , el) for k , l ≥ 1, P = P(·|e),

P(1:n) := P(·|e1:n) and P(n:1) := P(·|en:1)

with corresponding expectations E, E(1:n) and E(n:1). Then

P(1:n)((Z0, . . . ,Zn) ∈ ·) d
= P(n:1)((Z0, . . . ,Zn) ∈ ·)

for each n ∈ N.
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Branching in power fractional RE

Recalling gn(x) = g(en, x) := Anx + Bn, Πn =
∏n

k=1 Ak and
Rn :=

∑n
k=1 Πk−1Bk for n ∈ N, we have

ϕ ◦ f1:n(s) =
1

(1− f1:n(s))θ

=
Πn

(1− s)θ
+ Rn = g1:n ◦ ϕ(s)

for s ∈ [0,1), where ϕ(x) = (1− x)−θ.
Shows that each f1:n = f1 ◦ . . . ◦ fn is just a conjugation of
the (backward) iteration g1:n of the random affine linear
maps Anx + Bn.
The same statement holds for the forward iterations.
Results are often (not always) nicer when stated in terms
of backward iterations.
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The subcritical case: quasi-stationary behavior

Let (Zn)n≥0 be subcritical, thus R(−1)
∞ <∞ = R∞ and Πn →∞

a.s. Put hn(s) = E(1:n)(sZn |Zn > 0) for n ∈ N. Then

hn(s) =
f1:n(s)− f1:n(0)

1− f1:n(0)
= 1 − 1− f1:n(s)

1− f1:n(0)

and therefore

1
(1− hn(s))θ

=

[
1− f1:n(0)

1− f1:n(s)

]θ
=

Πn(1− s)−θ + Rn

Πn + Rn

=
Πn

Πn + Rn
· 1

(1− s)θ
+

Rn

Πn + Rn

=
1

1 + Rn/Πn
· 1

(1− s)θ
+

Rn/Πn

1 + Rn/Πn

for each n ∈ N.
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The subcritical case: quasi-stationary behavior

In other words, with probability one

P(1:n)(Zn ∈ ·|Zn > 0) = PF
(
θ,

1
1 + Rn/Πn

,
Rn/Πn

1 + Rn/Πn

)
is power fractional on the positive integers N.

However, it fluctuates in accordance with Rn/Πn which in turn
converges only in distribution. The same observation is made
for the pertinent quenched survival probability:

Π
1/θ
n P(1:n)(Zn > 0) =

1
E(1:n)(Zn|Zn > 0)

=
1

(1 + Rn/Πn)1/θ

almost surely.
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The subcritical case: quasi-stationary behavior

This is an illustrative instance of where a reversal of the
environment provides additional insight: Namely, this amounts
to a replacement of Rn/Πn by its a.s. convergent counterpart
R(−1)

n (with the same law!). We have

P(n:1)(Zn ∈ ·|Zn > 0) = PF
(
θ,

1

1 + R(−1)
n

,
R(−1)

n

1 + R(−1)
n

)
and accordingly

Π
1/θ
n P(n:1)(Zn > 0) =

1
E(n:1)(Zn|Zn > 0)

=
1

(1 + R(−1)
n )1/θ

almost surely.
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The supercritical case: quenched limit behavior

Let (Zn)n≥0 be supercritical: Πn → 0, R∞ <∞ = R(−1)
∞ a.s.

Then Wn := Π
1/θ
n Zn for n ≥ 0 forms nonnegative martingale

with mean one under the quenched probability measure P
(almost surely) and thus converges a.s. to a limit W .

The quenched law of W equals CPF(θ,1,R∞), with Laplace
transform

(3) ϕ(e,u) = Ee−uW = 1 −
[

1
uθ

+ R∞

]−1/θ

, u ≥ 0

and particularly also mean one.
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Applications

Multi-type branching
Host-parasite coevolution (e.g. basic model studied by
Kimmel and Bansaye), Kleine Büning.
Stochastic Ricker model and quasi-stationarity (Högnäs)
Two-sex branching models
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Hose-parasite coevolution (optional)

Parasite evolution in a random cell line if parasites multiply in
accordance with a linear fractional law (binary cell division):

parasites multiply independently.
parasite offspring law is LF(a,b).
offspring of a parasite in a cell is randomly shared into the
left or right daughter cell with probability p and 1− p,
respectively.

Let Zn(v) denote the number of parasites sitting in cell
v = v1 · · · vn ∈ {0,1}n for n ∈ N and Z0 = 1. Then
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Hose-parasite coevolution (optional)

... the law of Zn(v1 · · · vn)

LF

(
an

psn (1− p)n−sn
,b

n−1∑
k=0

an

psk (1− p)k−sk

)
,

where sn = sn(v) :=
∑n

i=1(1− vi) for each v ∈ {0,1}n and n.

random cell line→ simple random walk (Sn)n≥0.

can be extended to random environment acting on offspring law
and/or sharing mechanism.
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Stochastic Ricker model (optional)

Ricker function: R(x) = xeα(1−x/K ), α,K > 0. (Ricker 1954)
α = intrinsic growth rate, K = carrying capacity

L(Zn|Zn−1)

=

(
1− Zn−1eα(1−Zn−1/K )

1 + r

)
δ0 +

Zn−1eα(1−Zn−1/K )

1 + r
Geom+

(
1

1 + r

)

Implies E(Zn|Zn−1) = Zn−1eα(1−Zn−1/K )

fn(s) = E

(
1− Zn−1eα(1−Zn−1/K )

1 + r

)
+ E

(
Zn−1eα(1−Zn−1/K )

1 + r

)
g(s)

=

(
1−

eα(K−1/K )f ′n−1(e−α/K )

1 + r

)
+

eα(K−1/K )f ′n−1(e−α/K )

1 + r
g(s)
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Stochastic Ricker model (optional)

This entails

Zn
d
= LF

(
eα(K−1/K )f ′n−1(e−α/K )

1 + r
,
reα(K−1/K )f ′n−1(e−α/K )

1 + r

)

for each n ≥ 1. Moreover,

P(Zn ∈ ·|Zn > 0) = Geom+

(
1

1 + r

)
.

Thus, the quasi-stationary law of the sequence is positive
geometric with parameter 1/(1 + r).
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Stochastic Ricker model (optional)

Can impose a random environment by making parameters α, r
and K randomly change over time.
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