On the associated martingale for a multitype branching process in random environment

Ion Grama ${ }^{1}$

joint work with Quansheng Liu ${ }^{1}$, Thi Trang Nguyen ${ }^{1}$
${ }^{1}$ Laboratory of Mathematics of Atlantic Brittany (LMBA, UMR CNRS 6205) University of South Brittany, France

Talk at the conference conference "Branching Processes and Applications"
Angers, May 22-26

What is the talk about

(1) With a branching process in random environment (with one type on particles) $\left(Z_{n}\right)$ one can associate a martingale which is used to show that (under assumptions) the size of the population exploses:

$$
Z_{n} \asymp m_{1} \ldots m_{n}
$$

where m_{k} are the quenched reproduction means. For fixed deterministic environment (:= no environment) this simply reads

$$
Z_{n} \asymp m^{n} .
$$

(2) A similar result holds for a multitype branching process (without environment $=$ fixed deterministic environment). This is the famous Kesten-Stigum theorem.
(3) However, until recently there was no completely satisfactory analog of this property in the case of a multitype branching process in random environment. Previous results: Cohn (1989), Jones (1997) [L^{2}-convergence of $\left.\frac{Z_{n}^{i}(J)}{\mathbb{E}_{\xi} Z_{n}^{i}(J)}\right]$, Biggins, Cohn, Nerman (1999) [in $\left.L^{p}\right]$, Le Page, Peigné, Pham (2019).

Our contribution

- The main difficulty is the construction of the so called associated martingale, which is the main tool in establishing the K-S theorem.
- Our goal is to complement on the construction of this martingale in G.-Liu-Pin, AAP 2023, by considering a triangular array of martingales and by showing the convergence of its terminal values.
- Usefulness: this construction is used to prove the Berry-Esseen theorem, to establish Moderate deviations, and with the last developments also a precise Large deviation asymptotic (in progress).
- The construction of the associated martingale is related to a "new" version of the Perron-Frobenius theorem for products of random matrices.

Outline

(1) Start with the case of 1 type of particles.
(2) Then we will pass to multitype case: Kesten-Stigum theorem.
(3) We will state a Perron-Frobenius theorem for products of random matrices, construct the martingale and state an analog of the K-S theorem.
(4) May be some asymptotic results.

Single-type BP

Consider a single type branching process in random environment:

$$
Z_{0}=1, \quad Z_{n}=\sum_{l=1}^{Z_{n-1}} N_{l, n}, \quad n=1,2, \ldots
$$

- $N_{l, n}$ is the number of children generated by the parent l in generation $n-1$ $N_{1, n}, N_{2, n}, \ldots$ are i.i.d. with p.g.f. $f_{n}(s)=f_{\xi_{n}}(s)$.
- The environment sequence $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right)$ is i.i.d.

The martingale for single-type BP

(1) The reproduction mean in generation n is denoted by

$$
m_{n}=m\left(\xi_{n}\right)=\mathbb{E}_{\xi_{n}} N_{l, n}=\frac{\partial}{\partial s} f_{\xi_{n}}(1) .
$$

This is a sequence of i.i.d. random variables depending only on ξ.
(2) The following process is a martingale

$$
W_{0}=1, \quad W_{n}=\frac{Z_{n}}{m_{1} \ldots m_{n}}, \quad n \geqslant 1 . \quad\left(W_{n}=\frac{Z_{n}}{m^{n}}\right)
$$

with respect to the quenched measure \mathbb{P}_{ξ} and the filtration

$$
\mathscr{F}_{n}=\sigma\left\{\xi, N_{l, k}, k \leqslant n, \forall l\right\},
$$

Proof: Use the simple fact that $\mathbb{E}\left(Z_{n} \mid \mathscr{F}_{n-1}\right)=Z_{n-1} m_{n}$.

Why W_{n} is useful ?

- Assume that Z_{n} is supercritical $:=\mathbb{E} \log m_{1}>0$.
- The martingale W_{n} is very useful: - the population size Z_{n}
(1) Since W_{n} is a non-negative martingale, it converges \mathbb{P}_{ξ}-a.s. (\mathbb{P}-a.s.)

$$
W_{n}=\frac{Z_{n}}{m_{1} \ldots m_{n}} \rightarrow W . \quad\left(W_{n}=\frac{Z_{n}}{m^{n}} \rightarrow W\right)
$$

(2) W is non degenerate $\Leftrightarrow \mathbb{E} \frac{Z_{1}}{m_{1}} \log ^{+} Z_{1}<\infty$. $\left(\mathbb{E} Z_{1} \log ^{+} Z_{1}<\infty\right.$.)

This implies that Z_{n} increases exponentially on the set $\{W>0\}=$ the survival set. Sufficient part: Athreya and Karlin 1971. Necessary part: Tanny 1988.

- - the Berry-Esseen theorem; - Moderate (Large) deviations

$$
\log Z_{n}=\log \left(m_{1} \ldots m_{n}\right)+\log W_{n}
$$

- However, for multitype BPRE, the question on constructing the corresponding martingale was open for many years. We will try to explain why.

Multitype branching process

Consider a branching process with d types of particles (no environment):

$$
Z_{n}=\left(Z_{n}(1), \ldots, Z_{n}(d)\right), \quad Z_{n}=\sum_{r=1}^{d} \sum_{l=1}^{Z_{n-1}} N_{l, n}^{r}, \quad n=1,2, \ldots,
$$

- $N_{l, n}^{r}$ is the row-vector of children (of ${ }^{r-1}$ all $l=1$ types) generated by the parent / of type r in generation $n-1$:
- the sequence $N_{1, n}^{r}, N_{2, n}^{r}, \ldots$ is i.i.d. and independent of the past

$$
\mathscr{F}_{n-1}=\sigma\left\{N_{1, n}^{r}, \ldots, N_{2, n-1}^{r}\right\} .
$$

Matrix of the means

(1) With a constant deterministic environment, the mean number of born childreen is a (constant non-random) matrix M, whose entries

$$
M(r, j)=\mathbb{E} N_{l, n}^{r}(j)
$$

are the mean production of children of type j by any parent of type r.
(2) In an i.i.d. random environment $\xi=\left(\xi_{0}, \xi_{1}, \ldots\right)$ we will have matrices $\left(M_{n}\right)$ changing with n :

$$
M_{n}(r, j)=\mathbb{E}\left(N_{l, n}^{r}(j) \mid \xi\right)=\mathbb{E}\left(N_{l, n}^{r}(j) \mid \xi_{n}\right)
$$

each depending on the environment variable ξ_{n}.

- Since the sequence $\left(\xi_{n}\right)$ is i.i.d. if follows that the sequence of matrices $\left(M_{n}\right)$ is also i.i.d.

Kesten-Stigum theorem

Consider a MBP (no environment). The (non-random) mean matrix M is assumed to be primitive ($M^{k}>0$ for some $k \geqslant 1$).

- Let ρ be the spectral radius of M which is dominating eigenvalue of multiplicity 1.
- By the Perron-Frobenius theorem, there exist unique $u>0$ and $v>0$ which are the right and left row-eigenvectors of M, that is

$$
M u=\rho u, \quad v M=\rho v, \quad \text { with } \quad\|u\|=1,\langle v, u\rangle=1 .
$$

Theorem (Kesten-Stigum 1966)

(1) Part 1: for any $1 \leqslant i, j \leqslant d$ it holds, with some r.v. $W^{i} \geqslant 0$,

$$
\begin{equation*}
\frac{Z_{n}^{i}(j)}{\rho^{n} u(i) v(j)} \rightarrow W^{i} \quad \mathbb{P}-a . s . \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

(2) Part 2: the limits W^{i} are non degenerate for all $1 \leqslant i \leqslant d \Leftrightarrow$ $\mathbb{E} \boldsymbol{Z}_{1}^{i}(j) \log ^{+} Z_{1}^{i}(j)<\infty$, for all $1 \leqslant i, j \leqslant d$.
Notation: Z_{n}^{i} means that the BP starts with 1 particle of type i.

Equivalent formulation

(1) In addidtion to the previous the Perron-Frobenius theorem tels that $\lim _{n \rightarrow \infty} \frac{1}{\rho^{n}} M^{n}=u \otimes v$; in the component form becomes:

$$
M^{n}(i, j) \sim \rho^{n} v(i) u(j), \quad \text { for any } 1 \leqslant i, j \leqslant d
$$

(2) Then Part 1 of the K-S theorem (on previous slide) is equivalent to:

$$
\begin{equation*}
\frac{Z_{n}^{i}(j)}{\mathbb{E}_{\xi} Z_{n}^{i}(j)}=\frac{Z_{n}^{i}(j)}{M^{n}(i, j)} \rightarrow W^{i} \quad \mathbb{P} \text {-a.s. as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

The relation (2) is an analog of the convergence stated for the BP with 1 type of particles. It can be rewritten (with $x=e_{i}, y=e_{j}$):

$$
\begin{equation*}
\frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M^{n}, y\right\rangle} \rightarrow W^{x} \tag{3}
\end{equation*}
$$

(3) Note that $\frac{Z_{n}^{i}(j)}{M^{n}(i, j)}, n \geqslant 0$ is not a martingale as in the case $d=1$.

The associated martingale

(1) The K-S theorem is based on the following martingale: for $n \geqslant 0$,

$$
W_{n}=\frac{\left\langle Z_{n}^{i}, u\right\rangle}{\rho^{n} u(i)}=\frac{\left\langle Z_{n}^{e_{i}}, u\right\rangle}{\left\langle e_{i} M^{n}, u\right\rangle}, \quad n \geqslant 0
$$

which converges \mathbb{P}_{ξ}-a.s. to W^{i}.
(Recall: u is the right einenvector of M : $M u=\rho u$ or equivalently $u M^{T}=\rho u$).
(2) Proof. We use the simple property: $E_{\xi}\left(Z_{n} \mid \mathscr{F}_{n-1}\right)=Z_{n-1} M$. Thus

$$
\begin{aligned}
& \mathbb{E}_{\xi}\left(W_{n} \mid \mathscr{F}_{n-1}\right)=\frac{\left\langle\mathbb{E}_{\xi}\left(Z_{n}^{e_{i}} \mid \mathscr{F}_{n-1}\right), u\right\rangle}{\left\langle e_{i} M^{n}, u\right\rangle} \\
&=\frac{\left\langle Z_{n-1}^{e_{i}} M, u\right\rangle}{\left\langle e_{i} M^{n}, u\right\rangle}=\frac{\left\langle Z_{n-1}^{e_{i}}, u M^{T}\right\rangle}{\left\langle e_{i} M^{n-1}, u M^{T}\right\rangle}=\frac{\rho\left\langle Z_{n-1}^{e_{i}}, u\right\rangle}{\rho\left\langle e_{i} M^{n-1}, u\right\rangle} \\
&=\frac{\left\langle Z_{n-1}^{e_{i}}, u\right\rangle}{\left\langle e_{i} M^{n-1}, u\right\rangle}=W_{n-1}
\end{aligned}
$$

(3) Recall: until recently there was no extension to the case of a multitype BP in random environment. Why ?

Martingale extension: naive attempt

(1) Recall that with a random environment, we have a sequence of i.i.d. matrices $\left(M_{n}\right)$.

2 By analogy with the K-S construction set: for any x, y

$$
W_{n}^{x}(y)=\frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y\right\rangle}, \quad n \geqslant 0 .
$$

Question: what we should choose for y ?
(3) Let $y=y_{n}$ where y_{n} is the right eigenvector of the matrix M_{n} : $M_{n} y_{n}=\rho_{n} y_{n}$. Then, using $E_{\xi}\left(Z_{n}^{x} \mid \mathscr{F}_{n-1}\right)=Z_{n-1}^{x} M_{n}$,

$$
\begin{aligned}
& \mathbb{E}_{\xi}\left(W_{n}^{x}\left(y_{n}\right) \mid \mathscr{F}_{n-1}\right)=\frac{\left\langle E_{\xi}\left(Z_{n}^{x} \mid \mathscr{F}_{n-1}\right), y_{n}\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y_{n}\right\rangle} \\
& =\frac{\left\langle Z_{n-1}^{x} M_{n}, y_{n}\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y_{n}\right\rangle}=\frac{\left\langle Z_{n-1}^{x}, y_{n} M_{n}^{T}\right\rangle}{\left\langle x M_{1} \ldots M_{n-1}, y_{n} M_{n}^{T}\right\rangle} \\
& =\frac{\rho_{n}\left\langle Z_{n-1}^{x}, y_{n}\right\rangle}{\rho_{n}\left\langle x M_{1} \ldots M_{n-1}, y_{n}\right\rangle}=\frac{\left\langle Z_{n-1}^{x}, y_{n}\right\rangle}{\left\langle x M_{1} \ldots M_{n-1}, y_{n}\right\rangle} \neq W_{n-1} .
\end{aligned}
$$

To get a martingale we need the property $y_{n} M_{n}^{T}=\lambda_{n} y_{n-1}$. Dolgopyat, Hebbar, Koralov, Perlman (2018). [Seneta (1981)]

Recall the Perron-Frobenius theorem

Theorem

Assume that the matrix M has positive entries. Denote by $\rho=\rho(M)$ its spectral radius. Then
(1) $\rho>0$ and is an eigenvalue of the matrix M. Any other (possibly complex) eigenvalue in absolute value is strictly smaller than ρ. The eigenvalue ρ is simple and right and left eigenspaces associated with ρ are one-dimensional.
(2) There exists a right eigenvector $\mathbf{u}>0$ such that $M \mathbf{u}=\rho \mathbf{u}$.

There exists a left eigenvector $\mathbf{v}>0$ such that $M^{T} \mathbf{v}=\rho \mathbf{v}$.
The vectors \mathbf{u} and \mathbf{v} can be chosen uniquely in such a way that

$$
\|\mathbf{u}\|=\mathbf{1} \text { and }\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{1} .
$$

(3) In addition, it holds $\lim _{n \rightarrow \infty} \frac{1}{\rho^{n}} M^{n}=\mathbf{u} \otimes \mathbf{v}$, where the matrix $\mathbf{u} \otimes \mathbf{v}$ is the projection onto the subspace generated by \mathbf{u}.

These statements extend to a primitive M, i.e. $M \geqslant 0$ and $M^{k}>0$ for some $k \geqslant 1$.

Perron-Frobenius theorem

- The point 3 of the previous theorem, i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{\rho^{n}} M^{n}=\mathbf{u} \otimes \mathbf{v}
$$

can we rewritten in the following equivalent way:

- for any $1 \leqslant i, j \leqslant d$,

$$
\lim _{n \rightarrow \infty} \frac{\left\langle e_{i} M^{n}, e_{j}\right\rangle}{\rho^{n}\left\langle u, e_{i}\right\rangle\left\langle v, e_{j}\right\rangle}=1
$$

- or, for any $x, y \in \mathbb{R}^{d}, x, y \neq 0$ (instead of $\left.e_{i}, e_{j}\right)$,

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x M^{n}, y\right\rangle}{\rho^{n}\langle u, x\rangle\langle v, y\rangle}=1
$$

A Perron-Frobenius theorem for random matrices

Consider the i.i.d. random matrices M_{k} indexed with $k \in \mathbb{Z}$.
Assume condition A1:
(1) The matrices M_{k} satisfy $M_{k} \geqslant 0$ and are allowable (every row and every column contains a strictly positive entry).
(2) The Hennion condition: $\mathbb{P}\left(\exists k\right.$ such that $\left.M_{1} \ldots M_{k}>0\right)=1$.

This is an analog of the condition " $M^{k}>0$ for some $k \geqslant 0$ " (" M is primitive").

A Perron-Frobenius theorem for $\left(M_{n}\right)$

Theorem 1.

Assume A1 (alowability + Hennion condition):
(1) There exists a stationary and ergodic sequence of vectors $u_{n}>0$, $\left\|u_{n}\right\|=1, n \in \mathbb{Z}$:

$$
M_{n} u_{n+1}=\lambda_{n} u_{n}, \quad \lambda_{n}=\left\|M_{n} u_{n+1}\right\| .
$$

(2) There exists a stationary and ergodic sequence of vectors $v_{n}>0$, $\left\|v_{n}\right\|=1, n \in \mathbb{Z}$:

$$
v_{n-1} M_{n}=\mu_{n} v_{n}, \quad \mu_{n}=\left\|v_{n-1} M_{n}\right\| .
$$

(3) For any vectors x and y,

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x M_{k} \ldots M_{n}, y\right\rangle}{d_{k, n}\left\langle u_{k}, x\right\rangle\left\langle v_{n}, y\right\rangle}=1
$$

where $d_{k, n}:=\left\langle 1, M_{k} \ldots M_{n} 1\right\rangle=\sum_{i, j} M(i, j)$.

Relation to eigenvectors

(1) Let $\rho_{k, n}, u_{k, n}$ and $v_{k, n}$ be the spectral radius, the right and the left eigenvectors of the matrix $M_{k} \ldots M_{n}$, i.e.

$$
M_{k} \ldots M_{n} u_{k, n}=\rho_{k, n} u_{k, n} \quad v_{k, n} M_{k} \ldots M_{n}=\rho_{k, n} v_{k, n}
$$

with constraints $\left\|u_{k, n}\right\|=1$ and $\left\langle u_{k, n}, v_{k, n}\right\rangle=1$.
We have a.s.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{k, n}=u_{k}, \quad \lim _{k \rightarrow-\infty} \frac{v_{k, n}}{\left\|v_{k, n}\right\|}=v_{n} \tag{4}
\end{equation*}
$$

(2) Comparison with Hennion (1997) result: as $n \rightarrow \infty$ the convergence for v_{n} holds only in law: for fixed k

$$
\bar{v}_{k, n}:=\frac{v_{k, n}}{\left\|v_{k, n}\right\|} \xrightarrow{d} v_{k} \quad \Leftarrow\left(\frac{\left\langle\bar{v}_{k, n}, y\right\rangle}{\left\langle v_{n}, y\right\rangle} \rightarrow 1 \text { a.s. unif. } \forall y \neq 0 .\right)
$$

Some useful equivalences

(1) Taking $x=v_{k, n}$, from the point 3 of our Perron-Frobenius theorem we get: a.s.

$$
d_{k, n}:=\left\langle 1, M_{k} \ldots M_{n} 1\right\rangle=\sum_{i, j} M(i, j) \sim \rho_{k, n}\left\|v_{k, n}\right\| .
$$

(2) Moreover, taking $y=u_{n+1}$ (resp. $\left.x=v_{k-1}\right)$:

$$
d_{k, n}:=\left\langle 1, M_{k} \ldots M_{n} 1\right\rangle \sim \frac{\lambda_{k} \ldots \lambda_{n}}{\left\langle v_{n}, u_{n+1}\right\rangle}=\frac{\mu_{k} \ldots \mu_{n}}{\left\langle v_{k-1}, u_{k}\right\rangle} .
$$

Comparison with the standard Perron-Frobenius theorem

(1) Let $M_{k}=M$ be nonrandom.

Let u, v be the right and left eigenvectors, $\|u\|=1,\langle u, v\rangle=1$. ρ the spectral radius of M :
Then our P-F theorem gives: $\forall x, y \in \mathbb{R}^{d}$

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x M^{n}, y\right\rangle}{\left\langle 1, M^{n} 1\right\rangle\langle u, x\rangle\left\langle\frac{v}{\|v\|}, y\right\rangle}=1
$$

(2) Taking into account that

$$
\left\langle 1, M^{n} 1\right\rangle \sim \rho^{n}\|v\|
$$

we recover the standard form of the P-F theorem:
$\forall x, y \in \mathbb{R}^{d}, x, y \neq 0$

$$
\lim _{n \rightarrow \infty} \frac{\left\langle x M^{n}, y\right\rangle}{\rho^{n}\langle u, x\rangle\langle v, y\rangle}=1 \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} M^{n}=u \otimes v
$$

Associated martingale for MBPRE

(1) Using the sequence $y_{n}=u_{n+1}$, where $u_{n}>0, n \in \mathbb{Z}$ is stationary and ergodic and satisfies $M_{n} u_{n+1}^{T}=\lambda_{n} u_{n}^{T}$ and $\left\|u_{n}\right\|=1$, we obtain

Theorem 2

Under A1 (alowability + Hennion condition), the sequence

$$
W_{n}^{x}\left(u_{n+1}\right)=\frac{\left\langle Z_{n}^{x}, u_{n+1}\right\rangle}{\left\langle x M_{1} \ldots M_{n}, u_{n+1}\right\rangle}
$$

is a positive martingale.
(2) By the martingale convergence theorem there exist the following limit

$$
W_{n}^{x}\left(u_{n+1}\right)=\frac{\left\langle Z_{n}^{x}, u_{n+1}\right\rangle}{\left\langle x M_{1} \ldots M_{n}, u_{n+1}\right\rangle} \rightarrow W^{x}
$$

where $W^{x} \geqslant 0$. We shall discuss its non-degeneracy below.
(3) We still need to show a relation between $W_{n}^{x}\left(u_{n+1}\right)$ and the quantity we are interested in $W_{n}^{x}(y)=\frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y\right\rangle}$.

A triangular array of martingales

(1) Again using the property $E_{\xi}\left(Z_{n} \mid \mathscr{F}_{n-1}\right)=Z_{n-1} M_{n}$ we can easily check that, for any $n \geqslant 0$ and any x, y,

$$
W_{n, k}^{x}(y)=\frac{\left\langle Z_{k}^{x} M_{k+1} \ldots M_{n}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y\right\rangle}, k=0, \ldots, n
$$

is a triangular array of finite time \mathbb{P}_{ξ}-martingales.

$$
\begin{aligned}
& W_{00}^{x}(y) \\
& W_{10}^{x}(y) W_{11}^{x}(y) \\
& W_{20}^{x}(y) W_{21}^{x}(y) \quad W_{22}^{x}(y) \\
& \cdots \\
& W_{n 0}^{x}(y) \quad W_{n 1}(y) \quad \ldots \quad W_{n n}^{x}(y)
\end{aligned}
$$

(2) Its terminal valués are exactly the quantities of interest:

$$
W_{n, n}^{x}(y)=W_{n}^{x}(y)=\frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y\right\rangle}
$$

Kesten-Stigum type theorem

Theorem 3:

(1) Assume: A1 (allowability + Hennion condition),

$$
\text { A2 }\left(\mathbb{E} \log ^{+}\left\|M_{0}\right\|<+\infty\right) .
$$

Then $\quad \lim _{n \rightarrow \infty} \frac{W_{n}^{x}(y)}{W_{n}^{x}\left(u_{n+1}\right)}=1, \quad$ in probability $\mathbb{P}, \quad \forall x, y$.
conditioned on the explosion event $E^{x}=\left\{\lim _{n \rightarrow \infty} Z_{n}^{x}=\infty\right\}$.
(2) As a consequence, for any x and y, as $n \rightarrow \infty$,

$$
\begin{equation*}
W_{n}^{x}(y)=\frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}, y\right\rangle} \rightarrow W^{x}, \quad \text { in probability } \mathbb{P} \tag{6}
\end{equation*}
$$

where W^{x} is the limit of the martingale $\left(W_{n}^{x}\left(u_{n+1}\right)\right)_{n \geqslant 0}$.
This is the analog of the Part 1 of the Kesten-Stigum theorem (convergence to a limit).
The convergence is in probability only (since we have a triangular array of martingales). For the a.s. convergence we need some additional conditions.

K-S theorem: a.s. convergence

- Assume additionally that for some $p>1$ and for all $1 \leqslant r \leqslant d$,

$$
\begin{equation*}
\mathbb{E} \sup _{y \in \mathbb{R}_{+}^{d} \backslash\{0\}}\left(\frac{\left\langle Z_{1}^{r}, y\right\rangle}{\left\langle e_{r} M_{0}, y\right\rangle}\right)^{p}<+\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left\|M_{0}\right\|^{1-p}<+\infty \tag{8}
\end{equation*}
$$

Then, for any x and y, as $n \rightarrow \infty$, the convergence in the above theorem is \mathbb{P}-a.s.

Non-degeneracy for supercritical MBPRE's

(1) We prove the non-degeneracy of W^{X} for a supercritical MBPRE. What is definition of the supercriticality ?
(2) The following strong law of large numbers has been established by Furstenberg and Kesten 1960: under A2 ($\left.\mathbb{E} \log ^{+}\left\|M_{1}\right\|<+\infty\right)$,

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|M_{1} \ldots M_{n}\right\|=\gamma \quad \mathbb{P} \text {-a.s. }
$$

(3) The Lyapunov exponent γ allows to introduce the following classification of MBPRE's:

Definition

We say that $\left(Z_{n}\right)_{n \geqslant 0}$ is:
subcritical if $\gamma<0 ; \quad$ critical if $\gamma=0 ; \quad$ supercritical if $\gamma>0$.

This def. sticks with the definition for a single-type BP.

Non-degeneracy of W^{x}

- In the following we consider supercritical MBPRE's: $\gamma>0$. We give a sufficient condition for the non-degeneracy of W^{x}.
- Condition H2: For all $1 \leqslant r \leqslant d$,

$$
\begin{equation*}
\mathbb{E}\left(\frac{\left\langle N_{1,1}^{r}, u_{1}\right\rangle}{\lambda_{1}\left\langle u_{1}, e_{r}\right\rangle} \log ^{+}\left\langle N_{1,1}^{r}, u_{1}\right\rangle\right)<+\infty \tag{9}
\end{equation*}
$$

Theorem 3:

Assume: A1(allowability + Hennion condition),
A2 ($\left.\mathbb{E} \log ^{+}\left\|M_{1}\right\|<+\infty\right), \quad \gamma>0$ (supercritical).
(1) Then H 2 is a sufficient condition for W^{x} to be non-degenerate $\forall x$.
(2) Furthermore, when W^{x}, for $\forall x \neq 0$ are non-degenerate, we have $\mathbb{E}_{\xi} W^{x}=1$ for $\forall x \neq 0$, \mathbb{P}-a.s.

Characterization of the explosion event E^{x}

- Consider the survival event:

$$
F^{x}=\left\{\lim _{n \rightarrow+\infty} Z_{n}^{x}(r) \neq 0: \forall 1 \leqslant r \leqslant d\right\} \supset E^{x}
$$

- Let $q^{x}(\xi)$ be the probability of extinction of the process $\left(Z_{n}^{x}\right)_{n \geqslant 0}$:

$$
q^{x}(\xi):=1-\mathbb{P}_{\xi}\left(F^{x}\right)
$$

Theorem 4:

Assume: A1(allowability + Hennion condition),
A2 ($\left.\mathbb{E} \log ^{+}\left\|M_{1}\right\|<+\infty\right), \quad \gamma>0$ (supercritical).
(1) Then H 2 implies that, for all $x \neq 0$ we have $q^{x}(\xi)<1 \mathbb{P}$-a.s. and

$$
\begin{equation*}
\mathbb{P}_{\xi}\left(E^{x}\right)=1-q^{x}(\xi)>0 \quad \mathbb{P}-\text { a.s. } \tag{10}
\end{equation*}
$$

Eq (10) means that the explosion event coincides with the survival event: $E^{x}=F^{x}$.
(2) Moreover, on the explosion (= survival) event E^{x} we have, for any $y \neq 0$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\langle Z_{n}^{x}, y\right\rangle=\gamma \quad \mathbb{P} \text {-a.s. } \tag{11}
\end{equation*}
$$

Necessary and sufficient condition

We need stronger conditions:

- (F-K) The Furstenberg-Kesten condition: $\frac{\max _{i, j} M_{1}(i, j)}{\min _{i, j} M_{1}(i, j)} \leqslant C$
- Condition H3: For all $1 \leqslant r \leqslant d$, For all $1 \leqslant r, j \leqslant d$,

$$
\mathbb{E}\left[\frac{N_{1,1}^{r}(j)}{\left\langle e_{r} M_{1}, e_{j}\right\rangle} \log ^{+} \frac{N_{1,1}^{r}(j)}{\left\langle e_{r} M_{1}, e_{j}\right\rangle}\right]<+\infty
$$

Theorem 5:

Assume: F-K, A2 (E $\left.\log ^{+}\left\|M_{1}\right\|<+\infty\right), \quad \gamma>0$ (supercritical).
(1) Then H3 is a necessary and sufficient condition for W^{x} to be non-degenerate $\forall x$.
(2) Furthermore, when W^{x}, for $\forall x \neq 0$ are non-degenerate, we have $\mathbb{E}_{\xi} W^{x}=1$ for $\forall x \neq 0$, \mathbb{P}-a.s.

Proof: we use the method based on size biased tree by Lyons, Permantle and Peres (1995) [Bigging and Kyprianou (2004)].

Asymptotic results: LLN and CLT

- Strong law of large numbers: under A1, A2, on the explosion event $E^{x}=\left\{\lim _{n \rightarrow \infty} Z_{n}^{x}=\infty\right\}$, it holds that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|Z_{n}^{x}\right\|=\gamma \quad \text { a.s. } \tag{12}
\end{equation*}
$$

where γ is the Lyapunov exponent associated to $M_{0} \ldots M_{n}$.

- Berry-Esseen type theorem (the rate of convergence in the CLT):

Theorem 6

Under conditions, for any $n \geqslant 1$,

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\frac{\log \left\|Z_{n}^{x}\right\|-n \gamma}{\sigma \sqrt{n}} \leqslant t\right)-\Phi(t)\right| \leqslant \frac{C}{\sqrt{n}}, \tag{13}
\end{equation*}
$$

$\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} \mathrm{e}^{-u^{2} / 2} d u$ is the standard normal distribution function, $\sigma^{2}>0$ is the asymptotic variance.

A moderate deviation result

We need some operators related to the product of random matrices.

- Let $\mathcal{S}=\mathbb{B}_{1}(0) \cap \mathbb{R}_{+}^{d}$ where $\mathbb{B}_{1}(0)$ is the unit ball w.r.t. L_{1}-norm.
- Let $\mathcal{C}(\mathcal{S})$ be the space of continuous real valued functions φ on \mathcal{S} equiped with the sup norm $\|\varphi\|_{\infty}:=\sup _{x \in \mathcal{S}}|\varphi(x)|$.
- Under condition that $\log \left\|M_{1}\right\|$ has an exponential moment, for any $s \in\left[-\eta_{0}, \eta_{0}\right]$, define the transfer operator P_{s} as follows : for all $\varphi \in \mathcal{C}(\mathcal{S})$,

$$
\begin{equation*}
P_{s} \varphi(x):=\mathbb{E}\left(e^{s \log \left\|M_{1} x\right\|} \varphi\left(M_{1} \cdot x\right)\right), \quad x \in \mathcal{S} . \tag{14}
\end{equation*}
$$

- Its spectral radius $\kappa(s)$ can be computed as

$$
\begin{equation*}
\kappa(s):=\lim _{n \rightarrow+\infty}\left(\mathbb{E}\left\|M_{1} \ldots M_{n}\right\|^{s}\right)^{1 / n} \tag{15}
\end{equation*}
$$

and $0<\kappa(s)<+\infty$. Moreover, the function $s \mapsto \kappa(s)$ is analytic in $(-\eta, \eta)$ for $\eta>0$ small enough. Set $\Lambda(s):=\log \kappa(s)$. Then $\Lambda^{(1)}(0)=\gamma$ and $\Lambda^{(2)}(0)=\sigma^{2}$.

More conditions

- We will assume that each individual of the population gives birth to at least one child : which corresponds to the following assumption:

$$
\mathbb{P}_{\xi}\left(\left\|Z_{1}^{i}\right\|=0\right)=0, \quad 1 \leqslant i \leqslant d
$$

- $\log \left\|M_{1}\right\|$ has an exponential moment: for some $\eta_{0} \in(0,1)$,

$$
\mathbb{E}\left\|M_{1}\right\|^{\eta_{0}}<+\infty, \quad \max _{1 \leqslant i, j \leqslant d} \mathbb{E} M_{1}(i, j)^{-\eta_{0}}<+\infty \text { (or F-K condition) }
$$

and with some $p \in(1,2]$,

$$
\begin{gathered}
\mathbb{E}\left(\max _{1 \leqslant i, j \leqslant d} \mathbb{E}_{\xi}\left|\frac{N_{1,1}^{i}(j)}{M_{1}(i, j)}-1\right|^{p}\right)^{\eta_{0}}<\infty . \\
\sigma^{2}=\lim _{n \rightarrow+\infty} \frac{1}{n} \mathbb{E}\left[\left(\log \left\|\left(M_{n}^{T} \ldots M_{1}^{T}\right) x\right\|-n \gamma\right)^{2}\right]>0 .
\end{gathered}
$$

Moderate deviations

Theorem 7

Cramér type moderate deviation expansion: uniformly in $0 \leqslant t \leqslant o(\sqrt{n})$, as $n \rightarrow+\infty$,

$$
\begin{equation*}
\frac{\mathbb{P}\left(\frac{\log \left\|Z_{n}^{i}\right\|-n \gamma}{\sigma \sqrt{n}}>t\right)}{1-\Phi(x)}=\mathrm{e}^{\frac{x^{3}}{\sqrt{n}} \zeta\left(\frac{t}{\sqrt{n}}\right)}\left[1+O\left(\frac{1+t}{\sqrt{n}}\right)\right], \tag{16}
\end{equation*}
$$

ζ is the Cramér series associated to Λ : with $\gamma_{k}:=\Lambda^{(k)}(0)$,

$$
\zeta(t):=\frac{\gamma_{3}}{6 \gamma_{2}^{3 / 2}}+\frac{\gamma_{4} \gamma_{2}-3 \gamma_{3}^{2}}{24 \gamma_{2}^{3}} t+\frac{\gamma_{5} \gamma_{2}^{2}-10 \gamma_{4} \gamma_{3} \gamma_{2}+15 \gamma_{3}^{3}}{120 \gamma_{2}^{9 / 2}} t^{2}+\cdots
$$

which converges for $|t|$ small enough.

- The single type case $d=1$ has been considered in G, Liu and Miqueu (2017).

Main steps of the proof for MD

- For any $x, y \neq 0$

$$
\begin{aligned}
\log \left\langle Z_{n}^{x}, y\right\rangle & =\log \left\langle x M_{1} \ldots M_{n}, y\right\rangle+\log \frac{\left\langle Z_{n}^{x}, y\right\rangle}{\left\langle x M_{1} \ldots M_{n}^{X}, y\right\rangle} \\
& =\log \left\langle x, M_{n}^{T} \ldots M_{1}^{T} y\right\rangle+\log W_{n}^{x}(y)
\end{aligned}
$$

- Change the measure \mathbb{P} to $\mathbb{P}_{s}^{x}: P_{s} r_{s}(x)=\kappa(s) r_{s}(x), x \in S$, where r_{s} is the strictly positive bounded eigenfunction of P_{s}.
- Existence of the harmonic moments for $W^{x}=\lim _{n \rightarrow \infty} W_{n}^{x}$ under the changed measure: $\sup _{s \in(-\eta, \eta)} \mathbb{E}_{S}^{x}\left(W^{x}\right)^{-a}<+\infty$.
- Use a Berry-Esseen theorem for products of random matrices under the changed measure: for $\eta>0$ small enough, there exists a constant $C>0$ such that for all $n \geqslant 1, x, y \in \mathcal{S}$ and $t \in \mathbb{R}$,

$$
\left|\mathbb{P}_{s}^{x}\left(\frac{\log \left\langle x, M_{n}^{T} \ldots M_{1}^{T} y\right\rangle-n \wedge^{\prime}(s)}{\sigma_{s} \sqrt{n}} \leqslant t\right)-\Phi(t)\right| \leqslant \frac{C}{\sqrt{n}}
$$

Grama I., Liu Q., Miqueu E., Berry-Esseen's bound and Cramér's large deviation expansion for a supercritical branching process in a random environment, Stochastic Process. Appl., 127, 1255-1281, 2017.
Grama I., Liu Q., Pin E., Convergence in L^{p} for a supercritical multi-type branching process in a random environment, Proceedings of the Steklov Mathematical Institute, 316, 169-194, 2022,
Grama I., Liu Q., Pin E., A Kesten-Stigum type theorem for a supercritical multi-type branching process in a random environment, Annals Appl. Probab. 33(2), 1013-1051, 2023.

Grama I., Liu Q., Pin E., Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments, Preprint.

Grama I., Liu Q., Pin E., Cramér type moderate deviation expansion for supercritical multi-type branching processes in random environments, Preprint.

Thank you !!!

