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What is the talk about
1 With a branching process in random environment (with one type

on particles) (Zn) one can associate a martingale which is used to
show that (under assumptions) the size of the population
exploses:

Zn � m1 . . .mn.

where mk are the quenched reproduction means. For fixed
deterministic environment (:= no environment) this simply reads

Zn � mn.

2 A similar result holds for a multitype branching process (without
environment = fixed deterministic environment). This is the
famous Kesten-Stigum theorem.

3 However, until recently there was no completely satisfactory analog of
this property in the case of a multitype branching process in random
environment. Previous results: Cohn (1989), Jones (1997) [L2-convergence of Z i

n(j)
EξZ i

n(j)
],

Biggins, Cohn, Nerman (1999) [in Lp ], Le Page, Peigné, Pham (2019).
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Our contribution

The main difficulty is the construction of the so called associated
martingale, which is the main tool in establishing the K-S theorem.

Our goal is to complement on the construction of this martingale
in G.-Liu-Pin, AAP 2023, by considering a triangular array of
martingales and by showing the convergence of its terminal
values.

Usefulness: this construction is used to prove the Berry-Esseen
theorem, to establish Moderate deviations, and with the last
developments also a precise Large deviation asymptotic (in
progress).

The construction of the associated martingale is related to a "new"
version of the Perron-Frobenius theorem for products of random
matrices.
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Outline

1 Start with the case of 1 type of particles.
2 Then we will pass to multitype case: Kesten-Stigum theorem.
3 We will state a Perron-Frobenius theorem for products of random

matrices, construct the martingale and state an analog of the K-S
theorem.

4 May be some asymptotic results.
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Single-type BP
Consider a single type branching process in random environment:

Z0 = 1, Zn =

Zn−1∑
l=1

Nl,n, n = 1,2, . . .

Nl,n is the number of children generated by the parent l in
generation n − 1
N1,n,N2,n, . . . are i.i.d. with p.g.f. fn(s) = fξn (s).
The environment sequence ξ = (ξ0, ξ1, . . .) is i.i.d.
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The martingale for single-type BP
1 The reproduction mean in generation n is denoted by

mn = m(ξn) = EξnNl,n =
∂

∂s
fξn (1).

This is a sequence of i.i.d. random variables depending only on ξ.

2 The following process is a martingale

W0 = 1, Wn =
Zn

m1 . . .mn
, n > 1.

(
Wn =

Zn

mn

)
with respect to the quenched measure Pξ and the filtration

Fn = σ{ξ,Nl,k , k 6 n, ∀l},

Proof: Use the simple fact that E(Zn|Fn−1) = Zn−1mn.
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Why Wn is useful ?

Assume that Zn is supercritical := E log m1 > 0.
The martingale Wn is very useful: - the population size Zn

1 Since Wn is a non-negative martingale, it converges Pξ-a.s. (P-a.s.)

Wn =
Zn

m1 . . .mn
→W .

(
Wn =

Zn

mn →W
)

2 W is non degenerate⇔ E Z1
m1

log+ Z1 <∞.
(
EZ1 log+ Z1 <∞.

)
This implies that Zn increases exponentially on the set {W > 0} = the survival set.

Sufficient part: Athreya and Karlin 1971. Necessary part: Tanny 1988.

- the Berry-Esseen theorem; - Moderate (Large) deviations

log Zn = log(m1 . . .mn) + log Wn.

However, for multitype BPRE, the question on constructing the corresponding martingale

was open for many years. We will try to explain why.
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Multitype branching process
Consider a branching process with d types of particles (no environment):

Zn = (Zn(1), . . . ,Zn(d)), Zn =
d∑

r=1

Zn−1∑
l=1

N r
l,n, n = 1,2, . . . ,

N r
l,n is the row-vector of children (of all types) generated by the

parent l of type r in generation n − 1:
the sequence N r

1,n,N
r
2,n, . . . is i.i.d. and independent of the past

Fn−1 = σ{N r
1,n, . . . ,N

r
2,n−1}.
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Matrix of the means

1 With a constant deterministic environment, the mean number of
born childreen is a (constant non-random) matrix M, whose
entries

M(r , j) = EN r
l,n(j)

are the mean production of children of type j by any parent of type
r .

2 In an i.i.d. random environment ξ = (ξ0, ξ1, . . .) we will have
matrices (Mn) changing with n:

Mn(r , j) = E
(
N r

l,n(j)|ξ
)

= E
(
N r

l,n(j)|ξn
)

each depending on the environment variable ξn.

- Since the sequence (ξn) is i.i.d. if follows that the sequence of
matrices (Mn) is also i.i.d.
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Kesten-Stigum theorem
Consider a MBP (no environment). The (non-random) mean matrix M is
assumed to be primitive (Mk > 0 for some k > 1).

Let ρ be the spectral radius of M which is dominating eigenvalue
of multiplicity 1.
By the Perron-Frobenius theorem, there exist unique u > 0 and
v > 0 which are the right and left row-eigenvectors of M, that is

Mu = ρu, vM = ρv , with ‖u‖ = 1, 〈v ,u〉 = 1.

Theorem (Kesten-Stigum 1966)

1 Part 1: for any 1 6 i , j 6 d it holds, with some r.v. W i > 0,

Z i
n(j)

ρnu(i)v(j)
→W i P-a.s. as n→∞. (1)

2 Part 2: the limits W i are non degenerate for all 1 6 i 6 d ⇔
EZ i

1(j) log+ Z i
1(j) <∞, for all 1 6 i , j 6 d .

Notation: Z i
n means that the BP starts with 1 particle of type i .
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Equivalent formulation

1 In addidtion to the previous the Perron-Frobenius theorem tels that
limn→∞

1
ρn Mn = u ⊗ v ; in the component form becomes:

Mn(i , j) ∼ ρnv(i)u(j), for any 1 6 i , j 6 d .

2 Then Part 1 of the K-S theorem (on previous slide) is equivalent to:

Z i
n(j)

EξZ i
n(j)

=
Z i

n(j)
Mn(i , j)

→W i P-a.s. as n→∞. (2)

The relation (2) is an analog of the convergence stated for the BP
with 1 type of particles. It can be rewritten (with x = ei , y = ej ):

〈Z x
n , y〉

〈x Mn, y〉
→W x . (3)

3 Note that Z i
n(j)

Mn(i,j) , n > 0 is not a martingale as in the case d = 1.
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The associated martingale
1 The K-S theorem is based on the following martingale: for n > 0,

Wn =
〈Z i

n,u〉
ρnu(i)

=
〈Z ei

n ,u〉
〈eiMn,u〉

, n > 0,

which converges Pξ-a.s. to W i .
(Recall: u is the right einenvector of M: Mu = ρu or equivalently uMT = ρu).

2 Proof. We use the simple property: Eξ (Zn|Fn−1) = Zn−1M. Thus

Eξ (Wn|Fn−1) =
〈Eξ

(
Z ei

n |Fn−1
)
,u〉

〈eiMn,u〉

=
〈Z ei

n−1M,u〉
〈eiMn,u〉

=
〈Z ei

n−1,uMT 〉
〈eiMn−1,uMT 〉

=
ρ〈Z ei

n−1,u〉
ρ〈eiMn−1,u〉

=
〈Z ei

n−1,u〉
〈eiMn−1,u〉

= Wn−1.

3 Recall: until recently there was no extension to the case of a multitype BP in random

environment. Why ?
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Martingale extension: naive attempt
1 Recall that with a random environment, we have a sequence of

i.i.d. matrices (Mn).
2 By analogy with the K-S construction set: for any x , y

W x
n (y) =

〈Z x
n , y〉

〈xM1 . . .Mn, y〉
, n > 0.

Question: what we should choose for y ?

3 Let y = yn where yn is the right eigenvector of the matrix Mn:
Mnyn = ρnyn. Then, using Eξ (Z x

n |Fn−1) = Z x
n−1Mn,

Eξ (W x
n (yn)|Fn−1) =

〈Eξ (Z x
n |Fn−1), yn〉

〈xM1 . . .Mn, yn〉

=
〈Z x

n−1Mn, yn〉
〈xM1 . . .Mn, yn〉

=
〈Z x

n−1, ynMT
n 〉

〈xM1 . . .Mn−1, ynMT
n 〉

=
ρn〈Z x

n−1, yn〉
ρn〈xM1 . . .Mn−1, yn〉

=
〈Z x

n−1, yn〉
〈xM1 . . .Mn−1, yn〉

6= Wn−1.

To get a martingale we need the property ynMT
n = λnyn−1.

Dolgopyat, Hebbar, Koralov, Perlman (2018). [Seneta (1981)]
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Recall the Perron-Frobenius theorem

Theorem
Assume that the matrix M has positive entries. Denote by ρ = ρ(M) its
spectral radius. Then

1 ρ > 0 and is an eigenvalue of the matrix M. Any other (possibly
complex) eigenvalue in absolute value is strictly smaller than ρ. The
eigenvalue ρ is simple and right and left eigenspaces associated with ρ
are one-dimensional.

2 There exists a right eigenvector u > 0 such that Mu = ρu.
There exists a left eigenvector v > 0 such that MT v = ρv.
The vectors u and v can be chosen uniquely in such a way that
‖u‖ = 1 and 〈u,v〉 = 1.

3 In addition, it holds limn→∞
1
ρn Mn = u⊗ v, where

the matrix u⊗ v is the projection onto the subspace generated by u.

These statements extend to a primitive M, i.e. M > 0 and Mk > 0 for some k > 1.
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Perron-Frobenius theorem

The point 3 of the previous theorem, i.e.

lim
n→∞

1
ρn Mn = u⊗ v,

can we rewritten in the following equivalent way:

for any 1 6 i , j 6 d ,

lim
n→∞

〈ei Mn,ej〉
ρn〈u,ei〉〈v ,ej〉

= 1,

or, for any x , y ∈ Rd , x , y 6= 0 (instead of ei ,ej ),

lim
n→∞

〈x Mn, y〉
ρn〈u, x〉〈v , y〉

= 1.
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A Perron-Frobenius theorem for random
matrices

Consider the i.i.d. random matrices Mk indexed with k ∈ Z.

Assume condition A1:

1 The matrices Mk satisfy Mk > 0 and are allowable (every row and
every column contains a strictly positive entry).

2 The Hennion condition: P(∃k such that M1 . . .Mk > 0) = 1.
This is an analog of the condition "Mk > 0 for some k > 0" ("M is primitive").
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A Perron-Frobenius theorem for (Mn)

Theorem 1.
Assume A1 (alowability + Hennion condition):

1 There exists a stationary and ergodic sequence of vectors un > 0,
‖un‖ = 1, n ∈ Z:

Mn un+1 = λnun, λn = ‖Mnun+1‖.

2 There exists a stationary and ergodic sequence of vectors vn > 0,
‖vn‖ = 1, n ∈ Z:

vn−1 Mn = µnvn, µn = ‖vn−1Mn‖.

3 For any vectors x and y ,

lim
n→∞

〈x Mk . . .Mn, y〉
dk ,n〈uk , x〉〈vn, y〉

= 1,

where dk ,n := 〈1,Mk . . .Mn1〉 =
∑

i,j M(i , j).
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Relation to eigenvectors
1 Let ρk ,n, uk ,n and vk ,n be the spectral radius, the right and the left

eigenvectors of the matrix Mk . . .Mn, i.e.

Mk . . .Mnuk ,n = ρk ,nuk ,n vk ,nMk . . .Mn = ρk ,nvk ,n.

with constraints ‖uk ,n‖ = 1 and 〈uk ,n, vk ,n〉 = 1.
We have a.s.

lim
n→∞

uk ,n = uk , lim
k→−∞

vk ,n

‖vk ,n‖
= vn. (4)

2 Comparison with Hennion (1997) result: as n→∞ the
convergence for vn holds only in law: for fixed k

vk ,n :=
vk ,n

‖vk ,n‖
d→ vk ⇐

(
〈vk ,n, y〉
〈vn, y〉

→ 1 a.s. unif.∀y 6= 0.
)

MBPRE | Ion Grama | 26/05/2023 18 / 35



Some useful equivalences

1 Taking x = vk ,n, from the point 3 of our Perron-Frobenius theorem
we get: a.s.

dk ,n := 〈1,Mk . . .Mn1〉 =
∑
i,j

M(i , j) ∼ ρk ,n‖vk ,n‖.

2 Moreover, taking y = un+1 (resp. x = vk−1):

dk ,n := 〈1,Mk . . .Mn1〉 ∼ λk . . . λn

〈vn,un+1〉
=

µk . . . µn

〈vk−1,uk 〉
.
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Comparison with the standard
Perron-Frobenius theorem

1 Let Mk = M be nonrandom.
Let u, v be the right and left eigenvectors, ‖u‖ = 1, 〈u, v〉 = 1.
ρ the spectral radius of M:
Then our P-F theorem gives: ∀x , y ∈ Rd

lim
n→∞

〈x Mn, y〉
〈1,Mn1〉〈u, x〉〈 v

‖v‖ , y〉
= 1.

2 Taking into account that

〈1,Mn1〉 ∼ ρn‖v‖

we recover the standard form of the P-F theorem:
∀x , y ∈ Rd , x , y 6= 0

lim
n→∞

〈x Mn, y〉
ρn〈u, x〉〈v , y〉

= 1 ⇐⇒ lim
n→∞

1
n

Mn = u ⊗ v .
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Associated martingale for MBPRE
1 Using the sequence yn = un+1, where un > 0, n ∈ Z is stationary

and ergodic and satisfies Mn uT
n+1 = λnuT

n and ‖un‖ = 1, we obtain

Theorem 2
Under A1 (alowability + Hennion condition), the sequence

W x
n (un+1) =

〈Z x
n ,un+1〉

〈x M1 . . .Mn,un+1〉
is a positive martingale.

2 By the martingale convergence theorem there exist the following
limit

W x
n (un+1) =

〈Z x
n ,un+1〉

〈xM1 . . .Mn,un+1〉
→W x ,

where W x > 0. We shall discuss its non-degeneracy below.
3 We still need to show a relation between W x

n (un+1) and the
quantity we are interested in W x

n (y) = 〈Z x
n ,y〉

〈xM1...Mn,y〉 .
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A triangular array of martingales
1 Again using the property Eξ (Zn|Fn−1) = Zn−1Mn we can easily

check that, for any n > 0 and any x , y ,

W x
n,k (y) =

〈Z x
k Mk+1 . . .Mn, y〉
〈x M1 . . .Mn, y〉

, k = 0, . . . ,n

is a triangular array of finite time Pξ-martingales.

2 Its terminal values are exactly the quantities of interest:

W x
n,n(y) = W x

n (y) =
〈Z x

n , y〉
〈xM1 . . .Mn, y〉

.
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Kesten-Stigum type theorem
Theorem 3:

1 Assume: A1 (allowability + Hennion condition),
A2 (E log+ ‖M0‖ < +∞).

Then lim
n→∞

W x
n (y)

W x
n (un+1)

= 1, in probability P, ∀x , y . (5)

conditioned on the explosion event Ex = {limn→∞ Z x
n =∞}.

2 As a consequence, for any x and y , as n→∞,

W x
n (y) =

〈Z x
n , y〉

〈x M1 . . .Mn, y〉
→W x , in probability P, (6)

where W x is the limit of the martingale (W x
n (un+1))n>0.

This is the analog of the Part 1 of the Kesten-Stigum theorem (convergence to a limit).

The convergence is in probability only (since we have a triangular array of martingales).
For the a.s. convergence we need some additional conditions.
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K-S theorem: a.s. convergence

Assume additionally that for some p > 1 and for all 1 6 r 6 d ,

E sup
y∈Rd

+\{0}

(
〈Z r

1 , y〉
〈er M0, y〉

)p

< +∞ (7)

and

E‖M0‖1−p < +∞, (8)

Then , for any x and y , as n→∞, the convergence in the above
theorem is P-a.s.

MBPRE | Ion Grama | 26/05/2023 24 / 35



Non-degeneracy for supercritical MBPRE’s

1 We prove the non-degeneracy of W x for a supercritical MBPRE.
What is definition of the supercriticality ?

2 The following strong law of large numbers has been established
by Furstenberg and Kesten 1960: under A2 (E log+ ‖M1‖ < +∞),

lim
n→+∞

1
n

log ‖M1 . . .Mn‖ = γ P-a.s.

3 The Lyapunov exponent γ allows to introduce the following
classification of MBPRE’s:

Definition
We say that (Zn)n>0 is:
subcritical if γ < 0; critical if γ = 0; supercritical if γ > 0.

This def. sticks with the definition for a single-type BP.
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Non-degeneracy of W x

In the following we consider supercritical MBPRE’s: γ > 0.
We give a sufficient condition for the non-degeneracy of W x .
Condition H2: For all 1 6 r 6 d ,

E

(
〈N r

1,1, u1〉
λ1〈u1, er 〉

log+〈N r
1,1, u1〉

)
< +∞. (9)

Theorem 3:
Assume: A1(allowability + Hennion condition),

A2 (E log+ ‖M1‖ < +∞), γ > 0 (supercritical).
1 Then H2 is a sufficient condition for W x to be non-degenerate ∀x .

2 Furthermore, when W x , for ∀x 6= 0 are non-degenerate, we have
EξW x = 1 for ∀x 6= 0, P-a.s.

MBPRE | Ion Grama | 26/05/2023 26 / 35



Characterization of the explosion event Ex

Consider the survival event:
F x = { lim

n→+∞
Z x

n (r) 6= 0 : ∀ 1 6 r 6 d
}
⊃ Ex .

Let qx (ξ) be the probability of extinction of the process (Z x
n )n>0:

qx (ξ) := 1− Pξ
(
F x).

Theorem 4:
Assume: A1(allowability + Hennion condition),

A2 (E log+ ‖M1‖ < +∞), γ > 0 (supercritical).

1 Then H2 implies that, for all x 6= 0 we have qx (ξ) < 1 P-a.s. and

Pξ(Ex ) = 1− qx (ξ) > 0 P− a.s. (10)

Eq (10) means that the explosion event coincides with the survival event: Ex = F x .

2 Moreover, on the explosion (= survival) event Ex we have, for any y 6= 0,

lim
n→+∞

1
n

log〈Z x
n , y〉 = γ P-a.s. (11)
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Necessary and sufficient condition
We need stronger conditions:

(F-K) The Furstenberg-Kesten condition: maxi,j M1(i,j)
mini,j M1(i,j)

6 C

Condition H3: For all 1 6 r 6 d , For all 1 6 r , j 6 d ,

E

[
N r

1,1(j)

〈er M1, ej 〉
log+

N r
1,1(j)

〈er M1, ej 〉

]
< +∞.

Theorem 5:
Assume: F-K, A2 (E log+ ‖M1‖ < +∞), γ > 0 (supercritical).

1 Then H3 is a necessary and sufficient condition for W x to be
non-degenerate ∀x .

2 Furthermore, when W x , for ∀x 6= 0 are non-degenerate, we have
EξW x = 1 for ∀x 6= 0, P-a.s.

Proof: we use the method based on size biased tree by Lyons, Permantle and Peres (1995)

[Bigging and Kyprianou (2004)].
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Asymptotic results: LLN and CLT
Strong law of large numbers: under A1, A2, on the explosion
event Ex = {limn→∞ Z x

n =∞}, it holds that

lim
n→+∞

1
n

log ‖Z x
n ‖ = γ a.s. (12)

where γ is the Lyapunov exponent associated to M0 . . .Mn.
Berry-Esseen type theorem (the rate of convergence in the CLT):

Theorem 6
Under conditions, for any n > 1,

sup
t∈R

∣∣∣∣P( log ‖Z x
n ‖ − nγ
σ
√

n
6 t
)
− Φ(t)

∣∣∣∣ 6 C√
n
, (13)

Φ(t) = 1√
2π

∫ t
−∞ e−u2/2 du is the standard normal distribution function,

σ2 > 0 is the asymptotic variance.
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A moderate deviation result
We need some operators related to the product of random matrices.

Let S = B1(0) ∩ Rd
+ where B1(0) is the unit ball w.r.t. L1-norm.

Let C(S) be the space of continuous real valued functions ϕ on S
equiped with the sup norm ‖ϕ‖∞ := sup

x∈S
|ϕ(x)|.

Under condition that log ‖M1‖ has an exponential moment, for any
s ∈ [−η0, η0], define the transfer operator Ps as follows : for all
ϕ ∈ C(S),

Psϕ(x) := E
(
es log ‖M1x‖ϕ(M1 · x)

)
, x ∈ S. (14)

Its spectral radius κ(s) can be computed as

κ(s) := lim
n→+∞

(
E‖M1 . . .Mn‖s

)1/n (15)

and 0 < κ(s) < +∞. Moreover, the function s 7→ κ(s) is analytic in
(−η, η) for η > 0 small enough. Set Λ(s) := log κ(s). Then
Λ(1)(0) = γ and Λ(2)(0) = σ2.
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More conditions
We will assume that each individual of the population gives birth to
at least one child : which corresponds to the following assumption:

Pξ(‖Z i
1‖ = 0) = 0, 1 6 i 6 d .

log ‖M1‖ has an exponential moment: for some η0 ∈ (0,1),

E‖M1‖η0 < +∞, max
16i,j6d

EM1(i , j)−η0 < +∞ (or F-K condition)

and with some p ∈ (1,2],

E

(
max

16i,j6d
Eξ
∣∣∣∣ N i

1,1(j)
M1(i , j)

− 1
∣∣∣∣p
)η0

<∞.

σ2 = lim
n→+∞

1
n
E[(log ‖(MT

n . . .M
T
1 )x‖ − nγ)2] > 0.
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Moderate deviations
Theorem 7
Cramér type moderate deviation expansion: uniformly in
0 6 t 6 o(

√
n), as n→ +∞,

P
(
log ‖Z i

n‖−nγ
σ
√

n > t
)

1− Φ(x)
= e

x3
√

n
ζ( t√

n
)
[
1 + O

(
1 + t√

n

)]
, (16)

ζ is the Cramér series associated to Λ: with γk := Λ(k)(0),

ζ(t) :=
γ3

6γ3/2
2

+
γ4γ2 − 3γ2

3

24γ3
2

t +
γ5γ

2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + · · · ,

which converges for |t | small enough.

The single type case d = 1 has been considered in G, Liu and
Miqueu (2017).
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Main steps of the proof for MD
For any x , y 6= 0

log〈Z x
n , y〉 = log〈xM1 . . .Mn, y〉+ log

〈Z x
n , y〉

〈xM1 . . .Mx
n , y〉

= log〈x ,MT
n . . .M

T
1 y〉+ log W x

n (y)

Change the measure P to Px
s : Psrs(x) = κ(s)rs(x), x ∈ S, where rs

is the strictly positive bounded eigenfunction of Ps.
Existence of the harmonic moments for W x = limn→∞W x

n under
the changed measure: sups∈(−η,η) Ex

s (W x )−a < +∞.
Use a Berry-Esseen theorem for products of random matrices
under the changed measure: for η > 0 small enough, there exists
a constant C > 0 such that for all n > 1, x , y ∈ S and t ∈ R,∣∣∣∣Px

s

(
log〈x ,MT

n . . .MT
1 y〉 − nΛ′(s)

σs
√

n
6 t
)
− Φ(t)

∣∣∣∣ 6 C√
n
.
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Thank you !!!
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