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Outline of my talk
Stable and mixing convergences.
Motivation of research: Häusler and Luschgy (2015) proved stable
convergence of Conditional Least Squares Estimator (CLSE)
of the offspring mean for supercritical Galton-Watson processes
under non-extinction.
Continuous state and continuous time branching processes with
immigration (CBI processes): definition, classification and
asymptotic behaviour in the supercritical case.
CLSE of drift parameters for CBI processes based on discrete
time observations.
Some references on asymptotic behaviour of CLSE (all about
convergence in distribution).
A new result: stable convergence of CLSE of drift parameters for
supercritical CBI processes based on discrete time observations.

Proofs are based on a general multidimensional stable limit
theorem due to Barczy and Pap (2023).
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Stable and mixing convergences

The notion of stable (mixing) convergence is due to

Rényi (1950, 1958, 1963) and Rényi and Révész (1958).

Stable convergence is a type of convergence:
in the classical central limit theorem, not only convergence in
distribution, but mixing convergence holds as well.
limit theorems with random indices.
limit theorems for martingale difference arrays.
asymptotic behaviour of estimators, high frequency statistics.

Stable convergence has nothing to do with stable distribution.
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Stable and mixing convergences
Let (Ω,F ,P) be a probability space and G ⊂ F be a sub-σ-algebra.
Let (X n)n⩾1 and X be Rd -valued random variables defined on Ω.

Stable convergence
We say that X n converges G-stably to X as n → ∞, if

lim
n→∞

E(ξ E(h(X n) | G)) = E(ξ E(h(X ) | G))

for all random variables ξ : Ω → R with E(|ξ|) <∞ and for all
bounded and continuous functions h : Rd → R.

Mixing convergence
We say that X n converges G-mixing to X as n → ∞, if
X n converges G-stably to X as n → ∞, and σ(X ) and G are
independent. This equivalently means that

lim
n→∞

E(ξ E(h(X n) | G)) = E(ξ)E(h(X ))

for all random variables ξ : Ω → R with E(|ξ|) <∞ and for all
bounded and continuous functions h : Rd → R.

4



Characterisation of stable convergence

Portmanteau theorem for stable convergence
The following assertions are equivalent:

(i) X n converges G-stably to X as n → ∞.

(ii) for all F ∈ G with P(F ) > 0, we have

PX n
F converges weakly to PX

F as n → ∞,

where
PF denotes the conditional probability measure given F :

PF (B) :=
P(B ∩ F )

P(F )
, B ∈ F ,

PX n
F and PX

F are the distributions of Xn and X under PF , resp.
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Some further results on stable (mixing) convergences

(i) If G = {∅,Ω}, then G-stable convergence is nothing else but
convergence in distribution.

(ii) G-stable (mixing) convergence yields convergence in distribution.
(Indeed, one can choose ξ ≡ 1 in the definition, and then use
Portmanteau theorem for convergence in distribution.)

(iii) If Xn, n ⩾ 1, and X are random variables and X is G-measurable,
then

Xn converges to X in probability ⇐⇒ Xn → X G-stably.

By (i) and (iii), G-stable convergence is a type of convergence
between convergences in probability and in distribution.

(iv) If (Xn)n⩾1, X , and Y are random variables, then

Xn → X σ(Y )-stably ⇐⇒ (Xn,Y )
D−→ (X ,Y ).
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Galton-Watson process (without immigration)
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Yk is the number of individuals in the k th generation, k ∈Z+:={0,1, ...}.

Yk =

Yk−1∑
j=1

ξk ,j , k ∈ N := {1,2, . . .},

where

{Y0, ξk ,j : k , j ∈ N} are independent random variables,
Y0 is N-valued, ξk ,j is Z+-valued,
{ξ, ξk ,j : k , j ∈ N} are identically distributed (offspring distribution).
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Asymptotic behaviour of supercritical Galton-Watson
processes

A classification:

E(ξ) ∈ (0,1)
subcritical

E(ξ) = 1
critical

E(ξ) ∈ (1,∞)
supercritical

In the supercritical case (i.e., when E(ξ) > 1), if in addition,
E(Y 2

0 ) <∞ and E(ξ2) <∞, then there exists a nonnegative random
variable M∞ such that E(M2

∞) <∞ and

Yn

(E(ξ))n → M∞ as n → ∞ in L2 and P-a.s.

Further,

P( lim
n→∞

Yn = ∞) = P(M∞ > 0) > 0.

Hence, in the supercritical case, under the above second order
moment assumptions, the conditional probability measure P{M∞>0}
given {M∞ > 0} is well-defined (that will be used later on).
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CLSE for supercritical Galton-Watson processes

The CLSE of the offspring mean E(ξ) based on the observations
Y0,Y1, . . . ,Yn, n ∈ N, is defined as

argmin
α∈R

n∑
i=1

(Yi − αYi−1)
2.

Here note that

Yi − E(Yi | Y0, . . . ,Yi−1) = Yi − E(ξ)Yi−1, i = 1, . . . ,n.

The CLSE of E(ξ) takes the form

α̂
(CLSE)
n :=

∑n
k=1 Yk−1Yk∑n

k=1 Y 2
k−1

,

where
∑n

k=1 Y 2
k−1 ⩾ 1, since Y0 ⩾ 1 (by our assumption).
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Theorem (Häusler and Luschgy (2015))

Suppose that E(Y 4
0 ) <∞, E(ξ4) <∞, var(ξ) > 0 and α := E(ξ) > 1.

Then

P{M∞>0}(α̂
(CLSE)
n → α as n → ∞) = 1 (strong consistency),

and

(α3 − 1)1/2

α2 − 1
αn/2(α̂

(CLSE)
n − α)

→
√

var(ξ)
N√
M∞

FY
∞-stably under P{M∞>0} as n → ∞,

where
FY
∞ := σ

(⋃∞
n=0 σ(Y0,Y1, . . . ,Yn)

)
,

M∞ is an FY
∞-measurable random variable satisfying E(M2

∞) <∞
and α−nYn converges to M∞ as n → ∞ in L2 and P-a.s.,
N ∼ N (0,1), and N is P-independent of FY

∞.

This theorem has a version with random scaling, mixing convergence and normal limit law. 10



CBI processes

Notations:
R+ = [0,∞): non-negative real numbers,
R++ = (0,∞): positive real numbers,
C−: complex numbers with non-positive real parts,
C−−: complex numbers with negative real parts,
x ∧ y := min(x , y), x , y ∈ R.

Set of admissible parameters
A tuple (c,a,b, ν, µ) is called a set of admissible parameters if

c,a ∈ R+,
b ∈ R,
ν is a Borel measure on R++ satisfying

∫∞
0 (1 ∧ r) ν(dr) <∞,

µ is a Borel measure on R++ satisfying
∫∞

0 (z ∧ z2)µ(dz) <∞.
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Existence of CBI processes (see, e.g., Li (2011))
Let (c,a,b, ν, µ) be a set of admissible parameters. Then there exists a
unique transition semigroup (Pt)t∈R+ on R+ such that∫ ∞

0
euyPt(x , dy) = exp

{
xψ(t ,u) +

∫ t

0
F (ψ(s,u)) ds

}
for x , t ∈ R+ and u ∈ C−, where

for any u ∈ C−, the continuously differentiable function
R+ ∋ t 7→ ψ(t ,u) ∈ C−− is the unique locally bounded solution to
the DE

∂tψ(t ,u) = R(ψ(t ,u)), ψ(0,u) = u,

with

R(u) := cu2 + bu +

∫ ∞

0

(
euz − 1 − u(1 ∧ z)

)
µ(dz), u ∈ C−,

F (u) := au +
∫∞

0

(
eur − 1

)
ν(dr), u ∈ C−.
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CBI processes
A Markov process with state space R+ and with transition semigroup
(Pt)t∈R+ given above is called a

CBI process with parameters (c,a,b, ν, µ).

The function C− ∋u 7→ R(u)∈ C is called the branching mechanism.

The function C− ∋u 7→F (u) ∈ C− is called the immigration mechanism.

CB process: a = 0 and ν = 0 (i.e., F = 0).
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SDE for CBI processes (Dawson and Li (2006))
Let (c,a,b, ν, µ) be a set of admissible parameters. If E(X0) <∞
and

∫∞
1 r ν(dr) <∞, then there exists a pathwise unique R+-valued

solution to the jump-type SDE

Xt = X0 +

∫ t

0
(a + BXs) ds +

∫ t

0

√
2c max{0,Xs} dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0
z1{u⩽Xs−} Ñ(ds, dz, du) +

∫ t

0

∫ ∞

0
r M(ds, dr)

for t ∈ R+, where
B := b +

∫∞
1 (z − 1)µ(dz) ∈ R,

(Wt)t∈R+ is a standard Wiener process,

N and M are Poisson random measures on (0,∞)3 and on (0,∞)2 with
intensity measures ds µ(dz) du and ds ν(dr), resp.,

Ñ(ds, dz, du) := N(ds, dz, du)− ds µ(dz) du is the compensated Poisson
random measure corresponding to N,

X0, (Wt)t∈R+ , N and M are independent.

The solution is a CBI process with parameters (c,a,b, ν, µ).
14



Rewriting the SDE

Under the given moment conditions E(X0) <∞ and
∫∞

1 r ν(dr) <∞,
the SDE above can also be written as

Xt = X0 +

∫ t

0
(A + BXs) ds +

∫ t

0

√
2c max{0,Xs} dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0
z1{u⩽Xs−} Ñ(ds, dz, du) +

∫ t

0

∫ ∞

0
r M̃(ds, dr)

for t ∈ R+, where
A := a +

∫∞
0 r ν(dr),

M̃(ds, dr) := M(ds, dr)− ds ν(dr) is the compensated Poisson
random measure corresponding to M.

Note that this SDE contains integrals with respect to compensated
Poisson random measures.

Aim: to estimate the parameters A and B based on discrete time
observations, supposing that c, µ and ν are known.
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Interpretation of eB and A, and classification

One can derive

E(Xt | X0 = x) = eBtx + A
∫ t

0
eBu du, x ∈ R+, t ∈ R+,

which shows that
eB = E(Y1 | Y0 = 1), where (Yt)t∈R+ is a CBI process with
parameters (c,0,b,0, µ) (a pure branching process, CB process).
A = E(Z1 | Z0 = 0), where (Zt)t∈R+ is a CBI process with
parameters (0,a,0, ν,0) (a pure immigration process).

Hence one may call

eB the branching mean, and A the immigration mean.

Classification: a CBI process (Xt)t∈R+ is called
subcritical if B < 0 (⇐⇒ eB < 1),

critical if B = 0 (⇐⇒ eB = 1),

supercritical if B > 0 (⇐⇒ eB > 1). 16



Some known results about supercritical CBI processes
Asymptotic behaviour of supercritical CBI processes
Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 r ν(dr) <∞. Then there

exists a non-negative random variable wX0 with E(wX0) <∞ such that

e−BtXt
P-a.s.−→ wX0 as t → ∞.

Further, if
∫∞

1 z log(z)µ(dz) = ∞, then P(wX0 = 0) = 1.

Corollary
Under the assumptions of the previous result, for each ℓ ∈ N,

e−ℓBn
n∑

k=1

X ℓ
k−1

P-a.s.−→
w ℓ

X0

eℓB − 1
as n → ∞,

e−2Bn
n∑

k=1

Xk−1Xk
P-a.s.−→ eB

e2B − 1
w2

X0
as n → ∞.

These can be found in Barczy, Palau and Pap (2020, 2021) (or easy corollaries of them). 17



A set of sufficient conditions in order that P(wX0 = 0) = 0
Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and∫ ∞

1
z2 µ(dz) +

∫ ∞

1
r2 ν(dr) <∞.

If A > 0, i.e., a > 0 or ν ̸= 0 (i.e., (Xt)t∈R+ is not a CB process),
then P(wX0 = 0) = 0.

This can be found in Barczy, Palau and Pap (2020, 2021).
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CLSEs for CBI processes

Let FX
k := σ(X0,X1, . . . ,Xk ), k ∈ Z+.

Let FX
∞ := σ(

⋃∞
k=0 FX

k ).

Since (Xt)t∈R+ is a time-homogeneous Markov process, we get

E(Xk | FX
k−1) = E(Xk | Xk−1)= ϱXk−1 +A, k ∈ N,

where

ϱ := eB ∈ R++, A := A
∫ 1

0
eBs ds =

(
a +

∫ ∞

0
r ν(dr)

)∫ 1

0
eBs ds ∈ R+.

Let us introduce the sequence

Mk := Xk − E(Xk | FX
k−1)= Xk − ϱXk−1 −A, k ∈ N,

of martingale differences with respect to the filtration (FX
k )k∈Z+ .

Then Xk = ϱXk−1 +A+ Mk , k ∈ N.
19



In all what follows, we suppose that c, µ and ν are known.

CLSE of (ϱ,A)

For each n ∈ N, a CLSE (ϱ̂n, Ân) of (ϱ,A) based on observations
X0,X1, . . . ,Xn can be obtained by minimizing the sum of squares

n∑
k=1

M2
k =

n∑
k=1

(Xk − ϱXk−1 −A)2

with respect to (ϱ,A) over R2, and it has the form

[
ϱ̂n

Ân

]
:=

1

n
n∑

k=1
X 2

k−1 −
(

n∑
k=1

Xk−1

)2

 n
n∑

k=1
Xk Xk−1 −

n∑
k=1

Xk
n∑

k=1
Xk−1

n∑
k=1

Xk
n∑

k=1
X 2

k−1 −
n∑

k=1
Xk Xk−1

n∑
k=1

Xk−1


on the set

Hn :=
{
ω ∈ Ω : n

n∑
k=1

X 2
k−1(ω)−

(
n∑

k=1

Xk−1(ω)

)2

> 0
}
.
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References on CLSE for CBI processes (discrete time
observations, all about convergence in distribution)

Huang, Ma and Zhu (2014):

weighted CLSE of (B,a) based on observations X0,X1, . . . ,Xn,
n ∈ N, can be obtained by minimizing the sum of squares

n∑
k=1

1
Xk−1 + 1

(Xk − E(Xk | Xk−1))
2 =

n∑
k=1

1
Xk−1 + 1

(
Xk − eBXk−1 − A

∫ 1

0
eBs ds

)2

with respect to (B,a) over R2, where A = a +
∫∞

0 r ν(dr).

In the supercritical case, under 2nd -order moment conditions on
ν and µ, and supposing that X0 is a nonnegative constant,

the weighted CLSE of B is strongly consistent and is
asymptotically normal using an appropriate random scaling,
the weighted CLSE of a is not weakly consistent, but
asymptotically normal using an appropriate random scaling.

They proved results in the subcritical and critical cases as well.
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Barczy, Körmendi and Pap (2016):

CLSE of (B,A) based on observations X1, . . . ,Xn, n ∈ N,
assuming X0 = 0 and 8th-order moment conditions on ν and µ.

In the critical case, provided that A > 0, they described its
asymptotic behavior, and the limit distribution is non-normal
except the case when the CBI process is a pure immigration
process (otherwise, it is normal).
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References on CLSE for some special CBI processes

Overbeck and Rydén (1997):
CLSE and weighted CLSE for a Cox–Ingersoll–Ross process,
which is a CBI process of diffusion type (without jump part), i.e.,
when µ = 0 and ν = 0.

They studied the subcritical case assuming that X0 is distributed
according to the unique stationary distribution.

Li and Ma (2015):
CLSE and weighted CLSE of (B,a) for an α-stable CIR process,
which is a CBI process with c = 0, ν = 0 and µ(dz) = z−1−α dz,
where α ∈ (1,2).

They studied the subcritical case assuming that X0 is distributed
according to the unique stationary distribution.
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Form of CLSE of (ϱ,A)

Recall that the CLSE (ϱ̂n, Ân) of (ϱ,A) based on observations
X0,X1, . . . ,Xn takes the form

[
ϱ̂n

Ân

]
=

1

n
n∑

k=1
X 2

k−1 −
( n∑

k=1
Xk−1

)2


n

n∑
k=1

Xk Xk−1 −
n∑

k=1
Xk

n∑
k=1

Xk−1

n∑
k=1

Xk
n∑

k=1
X 2

k−1 −
n∑

k=1
Xk Xk−1

n∑
k=1

Xk−1


on the set

Hn =

{
ω ∈ Ω : n

n∑
k=1

X 2
k−1(ω)−

( n∑
k=1

Xk−1(ω)

)2

> 0

}
.

Existence and uniqueness of CLSE of (ϱ,A) in supercritical case
Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 z2 µ(dz) +

∫∞
1 r2 ν(dr) <∞.

Suppose that A = a +
∫∞

0 r ν(dr) > 0. Then
(i) P(wX0 > 0) = 1,
(ii) limn→∞ P(Hn) = 1, i.e., the probability of the existence of a unique

CLSE (ϱ̂n, Ân) of (ϱ,A) converges to 1 as n → ∞,
(iii) (ϱ̂n, Ân) has the form given above on the event Hn.
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CLSE of (B,A)

Recall that ϱ = eB ∈ R++ and A = A
∫ 1

0 eBs ds ∈ R+.

Hence (ϱ,A) = h(B,A), where h : R2 → R++ × R given by

h(x , y) :=
(

ex , y
∫ 1

0
exs ds

)
, (x , y) ∈ R2.

Note that h is bijective having inverse h−1 : R++ × R → R2 given by

h−1(u, v) =

(
log(u),

v∫ 1
0 us ds

)
, (u, v) ∈ R++ × R.

Motivated by (B,A) = h−1(ϱ,A), one can introduce a natural
estimator of (B,A) based on the observations X0,X1, . . . ,Xn
by applying h−1 to the CLSE (ϱ̂n, Ân), i.e.,

(B̂n, Ân) := h−1(ϱ̂n, Ân) =

(
log(ϱ̂n),

Ân∫ 1
0 (ϱ̂n)s ds

)
, n ∈ N,

on the set {ω ∈ Ω : ϱ̂n(ω) ∈ R++}.
25



CLSE of (B,A)

One can derive that
the probability of the existence of the estimator (B̂n, Ân) converges
to 1 as n → ∞ (following from the strong consistency of ϱ̂n, that can be proved

independently of the forthcoming limit theorem),
on the set {ω ∈ Ω : ϱ̂n(ω) ∈ R++}, we have

(B̂n, Ân) = argmin
(B,A)∈R2

n∑
k=1

(
Xk − eBXk−1 − A

∫ 1

0
eBs ds

)2

.

In what follows, we will simply call (B̂n, Ân) the CLSE of (B,A) based
on the observations X0,X1, . . . ,Xn.
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Strong consistency

Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 z2 µ(dz) +

∫∞
1 r2 ν(dr) <∞.

Suppose that A = a +
∫∞

0 r ν(dr) > 0. Then

the CLSE ϱ̂n of ϱ is strongly consistent, i.e., ϱ̂n
P-a.s.−→ ϱ as n → ∞.

the CLSE B̂n of B is strongly consistent, i.e., B̂n
P-a.s.−→ B as n → ∞.

Remark. What about (weak) consistency of Ân?

Our forthcoming limit theorem on CLSE will imply that

the CLSE of Ân of A is not (weakly) consistent if C ̸= 0,
and

the CLSE of Ân of A is (weakly) consistent if C = 0,

where
C := 2c +

∫ ∞

0
z2 µ(dz).

In case of C = 0, the question of strong consistency of Ân remains open. 27



Main result: asymptotic behaviour of CLSE (B̂n, Ân)

Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 z2 µ(dz) +

∫∞
1 r2 ν(dr) <∞.

Suppose that A = a +
∫∞

0 r ν(dr) > 0 (not a CB process).
Then [

eBn/2(B̂n − B)

ne−Bn/2(Ân − A)

]
→ S1/2N FX

∞-stably as n → ∞,

where
N is a 2-dimensional random vector P-independent of FX

∞ such
that N D

= N2(0,CI2) with C = 2c +
∫∞

0 z2 µ(dz),
the random matrix S, defined by

S :=

 (eB−1)(e2B−1)2

BeB(e3B−1) w−1
X0

− eB(eB−1)
e3B−1

− eB(eB−1)
e3B−1

Be2B

(eB−1)(e3B−1)wX0

 ,

is P-independent of N .
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Remark. In case of C = 0, (i.e., c = 0 and µ = 0), we have

the previous result implies that

eBn/2(B̂n − B)
D(P)−→ 0 as n → ∞,

ne−Bn/2(Ân − A)
D(P)−→ 0 as n → ∞.

Hence the scaling factors eBn/2 and ne−Bn/2 are not the good
ones in the sense that the limit distribution is zero.
This motivates a separate study of the case C = 0.

If, in addition, ν ̸= 0, then the next result shows that the scaling
factors eBn and n1/2 are the good ones in the sense that the
limit distribution is not zero.
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Main result: asymptotic behaviour of CLSE (B̂n, Ân)

If, in addition, C = 0 (i.e., c = 0 and µ = 0), then

eBn(B̂n − B) → e2B − 1
e2B w−1

X0

∞∑
j=0

e−BjZj FX
∞-stably as n → ∞,

and
n1/2(Ân − A) → N1 FX

∞-mixing as n → ∞,

where
N1 is a random variable P-independent of FX

∞ such that

N1
D
= N

(
0,

B(e2B − 1)
2(eB − 1)2

∫ ∞

0
r2 ν(dr)

)
,

(Zj)j∈Z+ are P-i.i.d. random variables being P-independent of
FX
∞ such that Z1 has a characteristic function

E(eiθZ1 ) = exp

{∫ 1

0

∫ ∞

0

(
eiθreBu

− 1 − iθreBu
)

du ν(dr)
}
, θ ∈ R.

Here Z1
D
= M1 = X1 − E(X1 | X0), and the series above is absolutely convergent P-almost surely. 30



Some remarks

1 The independence of N and S is a consequence of that N is
independent of FX

∞ and S is FX
∞-measurable following from the

FX
∞-measurability of wX0 .

2 The FX
∞-measurability of wX0 also implies that the sequence of

random variables (Zj)j∈Z+ and wX0 are independent.

3 The limit law for B̂n − B may depend on the law of the initial value
X0, since the law of wX0 may depend on the law of X0.
This phenomenon usually happens for limit laws of CLSEs for
supercritical models using deterministic scalings.
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Sketch of proof

The proof can be traced back to describe the asymptotic behaviour of
the CLSE (ϱ̂n, Ân) of (ϱ,A), since

[
eBn/2(B̂n − B)

ne−Bn/2(Ân − A)

]
= fn

([
eBn/2(ϱ̂n − ϱ)

ne−Bn/2(Ân −A)

])
, n ∈ N,

on the set {ω ∈ Ω : ϱ̂n(ω) ∈ R++}, where fn : R2 → R2 given by

fn

([
x
y

])
:=

 eBn/2 log
(
1 + x

eBn/2ϱ

)
y + ne−Bn/2A∫ 1
0 (ϱ+

x
eBn/2 )

s ds
− ne−Bn/2A


for (x , y) ∈ R2 with x > −eBn/2ϱ, and fn(x , y) := 0 otherwise,
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Sketch of proof

and then one can use the following continuous mapping theorem:

Continuous mapping theorem for stable convergence
Let

d ∈ N, (Ω,F ,P) be a probability space,

G ⊂ F be a sub-σ-algebra,

(ξn)n∈N and ξ be Rd -valued random variables on (Ω,F ,P) such that
ξn → ξ G-stably as n → ∞,

f : Rd → Rd and fn : Rd → Rd , n ∈ N, be Borel measurable mappings
such that limn→∞ fn(sn) = f (s) if limn→∞ sn = s ∈ Rd .

Then
fn(ξn) → f (ξ) G-stably as n → ∞.
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Sketch of proof

A useful decomposition for handling the CLSE (ϱ̂n, Ân) of (ϱ,A):

[
ϱ̂n − ϱ

Ân −A

]
=

1

n
n∑

k=1
X 2

k−1 −
( n∑

k=1
Xk−1

)2


n

n∑
k=1

Mk Xk−1 −
n∑

k=1
Mk

n∑
k=1

Xk−1

n∑
k=1

Mk
n∑

k=1
X 2

k−1 −
n∑

k=1
Mk Xk−1

n∑
k=1

Xk−1

 ,

where e−Bn∑n
k=1 Xk−1 and e−2Bn∑n

k=1 X 2
k−1 converges a.s.

We need to study the asymptotic behaviour of[ ∑n
k=1 Mk∑n

k=1 MkXk−1

]
as n → ∞,

with the aim of proving stable convergence.
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Sketch of proof
Theorem
Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 z2 µ(dz) +

∫∞
1 r2 ν(dr) <∞.

Suppose that A = a +
∫∞

0 r ν(dr) > 0.
Then[

e−Bn/2 0
0 e−3Bn/2

][ ∑n
k=1 Mk∑n

k=1 MkXk−1

]
→ R1/2Ñ FX

∞-stably as n → ∞,

where
Ñ is a 2-dimensional rand. vector P-independent of FX

∞ such that
Ñ D
=N2(0,V I2) with V :=C

∫ 1
0 eB(1+u) du and C = 2c+

∫∞
0 z2 µ(dz),

the random matrix

R :=

 wX0
eB−1

w2
X0

e2B−1

w2
X0

e2B−1

w3
X0

e3B−1

 is P-independent of Ñ .
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Sketch of proof

If C = 2c+
∫∞

0 z2 µ(dz) = 0 (i.e., c = 0 and µ = 0), then the limit
distribution above is (0,0), so other scaling factors should be found
in order to get a non-zero limit distribution.

Theorem
Let (Xt)t∈R+ be a supercritical CBI process with parameters
(c,a,b, ν, µ) such that E(X0) <∞ and

∫∞
1 z2 µ(dz) +

∫∞
1 r2 ν(dr) <∞.

Suppose that A = a +
∫∞

0 r ν(dr) > 0 and C = 0.
(i) We have

n−1/2
n∑

k=1

Mk → Ñ1 FX
∞-mixing as n → ∞,

where Ñ1 is a random variable P-independent of FX
∞ such that

Ñ1
D
= N

(
0,

e2B − 1
2B

∫ ∞

0
r2 ν(dr)

)
.
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(ii) We have

e−Bn
n∑

k=1

MkXk−1 →
wX0

eB

∞∑
j=0

e−BjZj FX
∞-stably as n → ∞,

where
(Zj)j∈Z+

are P-independent and identically distributed random
variables being P-independent from FX

∞,

Z1 has a characteristic function

E(eiθZ1) = exp

{∫ 1

0

∫ ∞

0

(
eiθreBu

− 1 − iθreBu
)

du ν(dr)
}
, θ ∈ R.

In particular, we have Z1
D
= M1 = X1 − E(X1 | X0).

the series
∑∞

j=0 e−BjZj is absolutely convergent P-almost surely.

In case of C = 0, we could not prove joint stable convergence of
n−1/2∑n

k=1 Mk and e−Bn∑n
k=1 MkXk−1 as n → ∞.
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Sketch of proof

The proof of the previous theorem,

in case of C ̸= 0, is based on a

multidimensional stable limit theorem

due to Barczy and Pap (2023).
It is a generalization of the corresponding 1-dimensional result
due to Häusler and Luschgy (2015).

in case of C = 0, is based on a

one dimensional stable limit theorem

and on a

martingale central limit theorem involving mixing convergence

due to Häusler and Luschgy (2015).

Next, we recall these results.
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Sketch of proof

Some notations:
for an event A ∈ F with P(A) > 0, let

PA(B) :=
P(B ∩ A)
P(A)

, B ∈ F ,

denote the conditional probability measure given A.

for an Rd -valued stochastic process (Un)n∈Z+ ,
its increments are defined by

∆Un := Un − Un−1, n ∈ N, and ∆U0 := 0.

ϱ(A) is the spectral radius of a matrix A ∈ Rd×d .
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A multidimensional stable limit theorem

Theorem (Barczy and Pap (2023))
Let

(Fn)n∈Z+ be a filtration,

(Un)n∈Z+ be an Rd -valued stochastic process adapted to (Fn)n∈Z+ ,

(Bn)n∈Z+be an Rd×d -valued stochastic process adapted to(Fn)n∈Z+

such that Bn is invertible for sufficiently large n ∈ N,

(Qn)n∈N be a sequence in Rd×d such that Qn → 0 as n → ∞
and Qn is invertible for sufficiently large n ∈ N,

G ∈ F∞ := σ(
⋃∞

k=0 Fk ) with P(G) > 0.

Bn will serve as a random scaling for Un,

Qn will serve as a deterministic scaling for Un.
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A multidimensional stable limit theorem
Assume the following conditions:

(i) there exists an Rd×d -valued, F∞-measurable random matrix
η : Ω → Rd×d such that P(G ∩ {∃η−1}) > 0 and

QnB−1
n

PG−→ η as n → ∞,

(ii) (QnUn)n∈N is stochastically bounded in PG∩{∃η−1}-probability:

lim
K→∞

sup
n∈N

PG∩{∃η−1}(∥QnUn∥ > K ) = 0,

(iii) there exists an invertible matrix P ∈ Rd×d with ϱ(P) < 1 such that

BnB−1
n−r

PG−→ Pr as n → ∞ for every r ∈ N,

(iv) there exists a probability measure µ on (Rd ,B(Rd)) with∫
Rd log

+(∥x∥)µ(dx) <∞ such that for all θ ∈ Rd , we have

EP
(
ei⟨θ,Bn∆Un⟩ | Fn−1

) PG∩{∃η−1}−→
∫
Rd

ei⟨θ,x⟩ µ(dx) as n → ∞.
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A multidimensional stable limit theorem

Then
with random scaling:

BnUn →
∞∑

j=0

P jZ j F∞-mixing under PG∩{∃η−1} as n → ∞,

with deterministic scaling:

QnUn → η
∞∑

j=0

P jZ j F∞-stably under PG∩{∃η−1} as n → ∞,

where (Z j)j∈Z+ denotes a P-independent and identically
distributed sequence of Rd -valued random vectors being
P-independent of F∞ with P(Z 0 ∈ B) = µ(B) for all B ∈ B(Rd).

Here η and (Z j)j∈Z+ are P-independent (since η is F∞-measurable,
and (Z j)j∈Z+ is P-independent of F∞).

42



References

This talk is based on the following two papers:

MÁTYÁS BARCZY AND GYULA PAP (2023).
A multidimensional stable limit theorem.
Filomat 37(11) 3493–3512.

MÁTYÁS BARCZY (2022+).
Stable convergence of conditional least squares estimators for
supercritical continuous state and continuous time branching
processes with immigration.
arXiv: 2207.14056

Thank you for your attention!
43


