ARIAN The multitype bisexual Galton-Watson branching process

Coralie Frisch, Denis Villemonais, Nicolas Zalduendo

Introduction

Two-sex branching processes were introduced by Daley in [2] and consist, at time $n \in \mathbb{N}$, of two disjoint classes (F_{n} and M_{n}) that form couples $\left(Z_{n}\right)$ that accomplish reproduction

(C)
(C) $\mathrm{Z}_{1}=\xi(3,2)=3 \mathrm{l} \mathrm{F}_{2}=1, M_{2}=2$
(C)

$$
Z_{2}=\xi(1,2)=1
$$

Figure 1:First two iterations of a bisexual GW process for some mating function ξ.

Since Daley's work, different models of two-sex population have been studied and, in particular, conditons for extinction and a malthusian behavior for this kind of processes have been established for general models. See for instance $[1,3,5]$ and the references therein.
Our focus of study is the multitype bisexual process with a finite number of types. Although specific models were studied in the two-sex population literature, no general mathematical description for this kind of processes has yet been established
We introduce the processes of females $\left(F_{n}\right)_{n \in \mathbb{N}}$, males $\left(M_{n}\right)_{n \in \mathbb{N}}$ and couples $\left(Z_{n}\right)_{n \in \mathbb{N}}$ taking values on $\mathbb{N}^{n_{f}}, \mathbb{N}^{n_{m}}$ and \mathbb{N}^{p} respectively. We also consider a determistic mating function $\xi: \mathbb{N}^{n_{m}} \times \mathbb{N}^{n_{m}} \longrightarrow \mathbb{N}^{p}$

Assumption on ξ

We suppose that the mating function ξ is superadditive, which means that for all $x_{1}, x_{2} \in \mathbb{N}^{n_{f}}$ and all $y_{1}, y_{2} \in \mathbb{N}^{p}$,
$\xi\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \geq \xi\left(x_{1}, y_{1}\right)+\xi\left(x_{2}, y_{2}\right)$,
where the inequality holds componentwise.

$$
Z_{0}=(1,2)
$$

$$
F_{1}=(1,1,2), M_{1}=(3,2)
$$

(C)

$$
\begin{equation*}
Z_{1}=\xi\left(F_{1}, M_{1}\right)=(1,1) \tag{c}
\end{equation*}
$$

Figure 2: First itereation of a multitype bisexual GW process for some mating function ξ

The R function

We define the function $R: \mathbb{R}_{+}^{p} \longrightarrow\left(\mathbb{R}_{+} \cup\{+\infty\}\right)^{p}$ by

$$
\begin{equation*}
R(z)=\lim _{k \rightarrow+\infty} \frac{\mathbb{E}\left(Z_{1} \mid Z_{0}=\lfloor k z\rfloor\right)}{k}, \tag{1}
\end{equation*}
$$

which is well defined thanks to the superadditivity of ξ. This ensures in addition that R is a concave function.

Eigenelements (see [4])

Assume that the function R defined in (1) is finite and suppose that $R^{n}(z)>0$ for all n big enough and all $z \in \mathbb{R}_{+}^{p} \backslash\{0\}$. Then, the problem

$$
\begin{equation*}
R\left(z^{*}\right)=\lambda^{*} z^{*} \tag{2}
\end{equation*}
$$

has a unique solution with $\lambda^{*}>0$ and $z^{*}>0$, with $\|z\|=1$.

Theorem: Extinction Conditions

Assume that $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is a transitive process. Set R as in (1) and assume it is finite and the conditions for (2) hold. Then,

$$
\mathbb{P}\left(Z_{n} \xrightarrow{n \rightarrow+\infty} 0 \mid Z_{0}=z\right)=1, \text { for all } z \in \mathbb{N}^{p} \Longleftrightarrow \lambda^{*} \leq 1
$$

If $\lambda^{*}>1$ or if there exists $z^{\prime} \in \mathbb{N}^{p}$ such that one of the components of $R\left(z^{\prime}\right)$ is not finite, then there exists $r>0$ such that, if $|z|>r$, then $\mathbb{P}\left(Z_{n} \rightarrow 0 \mid Z_{0}=z\right)<1$.

Theorem: Asymptotic Profile

Assume the same conditions as in the previous Theorem and suppose R is finite. Then, for all $z \in \mathbb{N}^{p}$, there exists a real nonnegative random variable \mathcal{C} such that

$$
\begin{equation*}
\frac{Z_{n}}{\left(\lambda^{*}\right)^{n}} \xrightarrow[n \rightarrow+\infty]{\mathbb{P}\left(\cdot Z_{0}=z\right) \text { ass. }} \mathcal{C} z^{*}, \frac{F_{n}}{\left(\lambda^{*}\right)^{n}} \xrightarrow{\mathbb{P}\left(\cdot \mid Z_{0}=z\right) \text { ass. }} \frac{1}{n \rightarrow+\infty} \mathcal{C} z^{*} \mathbb{F} \text { and } \frac{M_{n}}{\left(\lambda^{*}\right)^{n}} \xrightarrow{\mathbb{P}\left(\mid Z_{0}=z\right) \text { ass. }} \frac{1}{n \rightarrow+\infty} \mathcal{\lambda ^ { * }} z^{*} \mathbb{M}, \tag{3}
\end{equation*}
$$

with λ^{*} and z^{*} given by (2) and where \mathbb{F} and \mathbb{M} are explicit matrices.
Assume in addition that \mathcal{C} is non-degenerate at 0 . Then, for all $z \in \mathbb{N}^{p}$ and up to a $\mathbb{P}\left(\cdot \mid Z_{0}=z\right)$ negligible event,

$$
\{\mathcal{C}=0\}=\left\{\exists n \in \mathbb{N}, Z_{n}=0\right\} .
$$

Example: Perfect Fidelity

Set $n_{m}=n_{f}=p$ and consider the mating function

$$
\xi(x, y)=\left(\min \left\{x_{i}, y_{i}\right\}\right)_{1 \leq i \leq p}
$$

If in addition we suppose that every new individual is a female with probability $\alpha \in(0,1)$, independent of its type, then

$$
R(z)=\min \{\alpha, 1-\alpha\} \mathbb{U} z
$$

for \mathbb{U} an explicit matrix.
Hence, if we assume that $\mathbb{U}^{n}>0$ for all n big enough, we have

$$
\lambda^{*}=\min \{\alpha, 1-\alpha\} \lambda_{\mathbb{U}} \text { and } z^{*}=z_{\mathbb{U}}
$$

with $\lambda_{\mathbb{U}}$ and $z_{\mathbb{U}}$ the eigenelements of \mathbb{U}.

References

[1] Gerold Alsmeyer.
Bisexual galton-watson processes: A survey. https://www.uni-muenster.de/
Stochastik/alsmeyer/bisex(survey).pdf 2002.
[2] Daryl J. Daley.
Extinction conditions for certain bisexual galton-watson branching processes.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 9(4):315-322, 1968.
[3] David M. Hull.
A survey of the literature associated with the bisexual galton-watson branching process.
Extracta mathematicae, 18(3):321-343, 2003

4] Ulrich Krause

A nonlinear extension of the birkhoff-jentzsch theorem.
Journal of mathematical Analysis and
Applications, 114(2):552-568, 1986.
[5] Manuel Molina.
Two-sex branching process literature
In Workshop on branching processes and their applications, pages 279-293. Springer, 2010.

