Partha Pratim Ghosh, Technische Universität Braunschweig (Joint work with Antar Bandyopadhyay, Indian Statistical Institute)

The Model

The time is discrete and starts at 0 . At time $n=0$, there is only one particle at the origin. At time $n=1$, the particle dies and gives birth to some random number of offspring, which are then displaced according to a point process, say, Z. Then, at each time $n \geq 2$, each particle at generation $n-1$ dies and produces some random number of offspring, which are then given random displacements independently and according to a copy of the point process \mathbf{Z}.

Once this has been done, all particles at generation n are given further displacements by a set of i.i.d. random variables, of the form $\left(\frac{1}{\theta} A_{v}\right)_{|v|=n}$ which are independent of the process so far The distribution of this displacement variables, namely A_{v} 's and the "scaling" constant $\theta>0$ are two parameters of this model

This new process will be called Last Progeny Modified Branching Random Walk (LPM-BRW).

If we denote by S_{v} the position of an individual v, then the right-most position of the classical branching random walk

$$
R_{n}:=\max _{|v|=n} S_{v},
$$

and the right-most position of the modified branching random walk

$$
R_{n}^{*}:=\max _{|v|=n}\left(S_{v}+\frac{1}{\theta} A_{v}\right) .
$$

Question: How far the family may have spread in generation n for large n ? In other words, what is the asymptotic distribution of R_{n}^{*} ?

Transforming Relation

In our model, we take a specific type of distribution for the A_{v} 's. We take $A_{v}=\log \frac{Y_{v}}{E}$ where $\left(Y_{v}\right)_{|v|=n}$ are i.i.d. with some positively supported measure, say, μ and $\left(E_{v}\right)_{|v|=n}$ are i.i.d. Exponential(1) random variables and both sets of random variables are independent.

Theorem 1 (Basic Transforming Relation)
$\max _{i \geq 1}\left(X_{i}+\log \frac{Y_{i}}{E_{i}}\right) \stackrel{d}{=} \log \left(\sum_{i \geq 1} e^{X_{i}} Y_{i}\right)-\log E$,
where $\left\{Y_{i}\right\}_{i>1}$ are i.i.d. positive and $E,\left\{E_{i}\right\}_{i>1}$ are i.i.d. Exponential (1) and these sequences are independent of each other and also Independent of $\left\{X_{i}\right\}_{i \geq 1}$.

Theorem 2 (General Transforming Relation)

$$
R_{n}^{*} \stackrel{d}{=} \frac{1}{\theta}\left(\log \left(\sum_{|v|=n} e^{\theta S_{v}} Y_{v}\right)-\log E\right) .
$$

Assumptions

Define

$$
\nu(\theta)=\log \mathbb{E}\left[\int e^{\theta x} \mathbf{Z}(d x)\right]
$$

We assume that $\nu(\theta)<\infty$ for all $\theta \in(-\vartheta, \infty)$ and $\nu(0)>0$. Also, $\mathbb{E}\left[\mathbf{Z}(\mathbb{R})^{1+p}\right]<\infty$ for some $p>0$.

Let θ_{0} be such that the tangent to the graph of ν at the point $\left(\theta_{0}, \nu\left(\theta_{0}\right)\right)$ passes through the origin.

SLLN for R_{n}^{*}

Theorem 3 For every non-negatively supported probability $\mu \neq \delta_{0}$ that admits a finite mean

$$
\frac{R_{n}^{*}}{n} \xrightarrow{\text { a.s. }}\left\{\begin{array}{cc}
\frac{\nu(\theta)}{\theta} & \text { if } \theta<\theta_{0} \\
\frac{\nu\left(\theta_{0}\right)}{\theta_{0}} & \text { if } \theta \geq \theta_{0}
\end{array}\right.
$$

Comparison (Biggins[1976])

$$
\frac{R_{n}}{n} \xrightarrow{\text { a.s. }} \frac{\nu\left(\theta_{0}\right)}{\theta_{0}}
$$

Centered asymptotic limits

Boundary Case ($\theta=\theta_{0}$) :
Theorem 5 Assume that μ admits a finite mean, then there exists a random variable $H_{\theta_{0}}^{\infty}$ such that

$$
R_{n}^{*}-\frac{\nu\left(\theta_{0}\right)}{\theta_{0}} n+\frac{1}{2 \theta_{0}} \log n \xrightarrow{d} H_{\theta_{0}}^{\infty}+\frac{1}{\theta_{0}} \log \langle\mu\rangle,
$$

where $H_{\theta_{0}}^{\infty}=\frac{1}{\theta_{0}}\left[\log D_{\infty}-\log E+\frac{1}{2} \log \left(\frac{2}{\pi \sigma^{2}}\right)\right]$; D_{∞} is the a.s. limit of the derivative martingale, $D_{n}=-\frac{1}{m\left(\theta_{0}\right)^{n}} \sum_{|v|=n}\left(\theta_{0} S_{v}-n \nu\left(\theta_{0}\right)\right) e^{\theta_{0} S_{v}}$; and $E \sim$ Exponential (1) is independent of D_{∞}. Further, $\sigma^{2}:=\mathbb{E}\left[\frac{1}{m\left(\theta_{0}\right)^{n}} \sum_{|v|=n}\left(\theta_{0} S_{v}-n \nu\left(\theta_{0}\right)\right)^{2} e^{\theta_{0} S_{v}}\right]$.

Below the Boundary $\left(\theta<\theta_{0}\right)$:
Theorem 6 Assume that μ admits finite mean, then

$$
R_{n}^{*}-\frac{\nu(\theta)}{\theta} n \xrightarrow{d} H_{\theta}^{\infty}+\frac{1}{\theta} \log \langle\mu\rangle .
$$

Above the Boundary $\left(\theta>\theta_{0}\right)$:
Theorem 7 Suppose $\mu=\delta_{1}$, then

$$
R_{n}^{*}-\frac{\nu\left(\theta_{0}\right)}{\theta_{0}} n+\frac{3}{2 \theta_{0}} \log n \xrightarrow{d} H_{\theta}^{\infty}
$$

Comparison (Aïdékon [2013]) There exists a random variable H_{∞} such that

$$
R_{n}-\frac{\nu\left(\theta_{0}\right)}{\theta_{0}} n+\frac{3}{2 \theta_{0}} \log n \xrightarrow{d} H_{\infty},
$$

where $H_{\infty}=\frac{1}{\theta_{0}}\left[\log D_{\infty}-\log E+C\right]$ and C is a constant.

References

1. A. Badyopadhyay and P. P. Ghosh. Right-most position of a last progeny modified branching random walk. arXiv:2106.02880, 2021.
2. A. Badyopadhyay and P. P. Ghosh. Right-most position of a last progeny modified time inhomogeneous branching random walk. Statistics E Probability Letters, 193: Paper No. 109697 (2023).
3. P. P. Ghosh. Large deviations for the right-most position of a last progeny modified branching random walk. Electronic Communications in Probability, 27: Paper No. 6 (2022).

Brunet-Derrida Type Results

Theorem 4 For any $\theta \leq \theta_{0}$,

$$
\sum_{|v|=n} \delta_{\left\{\theta S(v)-\log E_{v}-\theta R_{n}^{*}\right\}} \xrightarrow{d} \overline{\mathcal{Y}},
$$

where \mathcal{Y} is an inhomogeneous Poisson point process on \mathbb{R} with intensity $e^{-x} d x$ and $\overline{\mathcal{Y}}$ is the point process \mathcal{Y} seen from its right-most position.

Comparison (Madaule [2017])

$$
\sum_{|v|=n} \delta_{\left\{\theta_{0} S(v)-\theta_{0} R_{n}\right\}} \xrightarrow{d} \overline{\mathcal{X}}
$$

where \mathcal{X} is a decorated Poisson point process on \mathbb{R} and $\overline{\mathcal{X}}$ is the point process \mathcal{X} seen from its right-most position.

Proof of Transforming Relation

$$
\begin{aligned}
& \max _{i \geq 1}\left(X_{i}+\log \frac{Y_{i}}{E_{i}}\right) \\
&= \max _{i \geq 1}\left(\log \frac{e^{X_{i}} Y_{i}}{E_{i}}\right) \\
&=-\log \left(\min _{i \geq 1} \frac{E_{i}}{e^{X_{i}} Y_{i}}\right) \\
& \stackrel{d}{=}-\log \frac{E}{\sum_{i \geq 1} e^{X_{i}} Y_{i}} \\
&= \log \left(\sum_{i \geq 1} e^{X_{i}} Y_{i}\right)-\log E .
\end{aligned}
$$

