The all-time maximum for branching Brownian motion with absorption conditioned on long-time survival

Joint work with Jason Schweinsberg

Pascal Maillard (Université de Toulouse)

Overview

1. The model

2. Results

3. Proofs

Branching Brownian motion (BBM)

Definition

- A particle performs standard Brownian motion started at a point $x \in \mathbb{R}$.
- With rate $1 / 2$, it branches into 2 offspring (can be generalized)
- Each offspring repeats this process independently of the others.
$R(t)=$ maximum at time t.
Asymptotic speed (Biggins 1977)
Almost surely,

$$
R(t) / t \rightarrow 1, \quad \text { as } t \rightarrow \infty
$$

Branching Brownian motion with absorption

Definition

- Start with one particle at $x \geq 0$.
- Add drift -1 , to motion of particles.
- Kill particles upon hitting the origin.

Process dies out almost surely Kesten 1978.

Questions

What is the probability of survival until a large time t ?
What does the BBM with absorption and critical drift "look like" when conditioned to survive until a large time t ?

Context: Genealogy of branching Markov processes

Critical Bienaymé-Galton-Watson process $\left(Z_{n}\right)_{n \geq 0}$, unit variance.

- $\mathbb{P}($ survival until generation $n) \sim 2 / n, n \rightarrow \infty$ Kolmogorov 1938
- $\left(Z_{\lfloor s n\rfloor} / n\right)_{s \in[0,1]}$ cond. on $Z_{n}>0$ converges in law to a cond. Feller diffusion.

Context: Genealogy of branching Markov processes

Critical Bienaymé-Galton-Watson process $\left(Z_{n}\right)_{n \geq 0}$, unit variance.

- $\mathbb{P}($ survival until generation $n) \sim 2 / n, n \rightarrow \infty$ Kolmogorov 1938
- $\left(Z_{\lfloor s n\rfloor} / n\right)_{s \in[0,1]}$ cond. on $Z_{n}>0$ converges in law to a cond. Feller diffusion.

Question

Does this hold for general multi-type branching processes?

Context: Genealogy of branching Markov processes

Critical Bienaymé-Galton-Watson process $\left(Z_{n}\right)_{n \geq 0}$, unit variance.

- $\mathbb{P}($ survival until generation $n) \sim 2 / n, n \rightarrow \infty$ Kolmogorov 1938
- $\left(Z_{\lfloor s n\rfloor} / n\right)_{s \in[0,1]}$ cond. on $Z_{n}>0$ converges in law to a cond. Feller diffusion.

Question

Does this hold for general multi-type branching processes?
Yes for finite number of types. In general (infinite number of types), need a certain integrability condition. Aïdékon, de Raphélis, Harris, Horton, Kyprianou, Palau, Powell, Tourniaire, Wang, ...

Results

Survival probability

$$
L_{t}=c t^{1 / 3}, c=\left(3 \pi^{2} / 2\right)^{1 / 3}, w_{t}(x)=L_{t} \sin \left(\pi x / L_{t}\right) e^{x-L_{t}} .
$$

Theorem (M.-Schweinsberg, 2022)

If $x=x(t)$ such that $L_{t}-x \rightarrow \infty$, for some constant $\alpha>0$,

$$
\mathbb{P}_{x}(\text { survival until time } t) \sim \alpha w_{t}(x) .
$$

- Throughout the article: asymptotics as $t \rightarrow \infty$.
- Previous results by Berestycki-Berestycki-Schweinsberg 2012, Kesten 1978, Derrida-Simon 2007
- $t^{1 / 3}$ scaling reminiscent of results about particles in BBM staying always close to the maximum Faraud-Hu-Shi 2012, Fang-Zeitouni 2012, Roberts 2015.

Survival probability (contd.)

$$
L_{t}=c t^{1 / 3}, c=\left(3 \pi^{2} / 2\right)^{1 / 3}, w_{t}(x)=L_{t} \sin \left(\pi x / L_{t}\right) e^{x-L_{t}}
$$

Theorem (MS22)

If $x=x(t)$ such that $L_{t}-x \rightarrow \infty$, for some constant $\alpha>0$,

$$
\mathbb{P}_{x}(\text { survival until time } t) \sim \alpha w_{t}(x) .
$$

$\zeta=$ time of extinction.

Corollary (MS22)

Suppose $x=x(t)$ such that $L_{t}-x \rightarrow \infty$. Let $V \sim \operatorname{Exp}(1)$. Then,

$$
\frac{\zeta-t}{t^{2 / 3}} \Longrightarrow \frac{3}{c} V, \quad \text { under } \mathbb{P}_{x}(\cdot \mid \zeta>t)
$$

Yaglom limit

$$
L_{t}=c t^{1 / 3}, c=\left(3 \pi^{2} / 2\right)^{1 / 3}, \zeta=\text { time of extinction, } R(t)=\max _{u} X_{u}(t)
$$

Theorem (MS22)

Suppose $x=x(t)$ such that $L_{t}-x \rightarrow \infty$. Let $V \sim \operatorname{Exp}(1)$. Then,

$$
\frac{R(t)}{t^{2 / 9}} \Longrightarrow\left(3 c^{2} V\right)^{1 / 3}, \quad \text { under } \mathbb{P}_{x}(\cdot \mid \zeta>t)
$$

Reason: morally, $R_{t} \approx L_{\zeta-t}$ if $\zeta>t$ (and $R_{t}=0$ if $\zeta \leq t$). (TODO: picture)
Same result holds with R_{t} replaced by $\log \# \mathcal{N}_{t}$.

New result: All-time maximum

Define

$$
\mathfrak{M}=\max _{s \geq 0} R(s), \quad \mathfrak{m}=\underset{s \geq 0}{\arg \max } R(s) .
$$

Theorem (M.-Schweinsberg, 2023+)

Suppose $x=x(t)$ such that $L_{t}-x \gg t^{1 / 6}$. Then as $t \rightarrow \infty$, conditional on $\zeta>t$ we have the convergence in law

$$
\begin{equation*}
\left(\frac{L_{t}-\mathfrak{M}}{t^{1 / 6}}, \frac{\mathfrak{m}}{t^{5 / 6}}\right) \Rightarrow\left(c^{1 / 2} R, 3 c^{-1 / 2} U R\right) \tag{1}
\end{equation*}
$$

where R and U are independent random variables, R is Rayleigh distributed with density $2 r e^{-r^{2}}$ on \mathbb{R}_{+}, and U has a uniform distribution on $[0,1]$.

Proofs

https://afst.centre-mersenne.org/

Workhorse: the process $Z_{t}(s)$

- $L_{t}(s)=L_{t-s}=c(t-s)^{1 / 3}$.
- $Z_{t}(s)=\sum_{u \in \mathbb{N}_{s}} w_{t-s}\left(X_{u}(s)\right)=\sum_{u \in \mathbb{N}_{s}} L_{t}(s) \sin \left(\pi X_{u}(s) / L_{t}(s)\right) e^{X_{u}(s)-L_{t}(s)}$.

Theorem (MS22)

Suppose we start with an initial configuration of particles so that $Z_{t}(0) \rightarrow z_{0}>0$ and $L_{t}-R(0) \rightarrow \infty$. Then there exists a non-degenerate stochastic process $(\Xi(s))_{s \geq 0}$, such that the following convergence in law holds (w.r.t finite-dimensional distributions):

$$
\left(Z_{t}\left(t\left(1-e^{-s}\right)\right)\right)_{s \geq 0} \Longrightarrow(\Xi(s))_{s \geq 0}, \quad \text { under } \mathbb{P}_{x}(\cdot \mid \zeta>t)
$$

In fact, $(\Xi(s))_{s \geq 0}$ is the continuous-state branching process (CSBP) with branching mechanism $\psi(u)=a u+\frac{2}{3} u \log u$, for some $a \in \mathbb{R}$, started from z_{0}.

Workhorse: the process $Z_{t}(s)$

- $L_{t}(s)=L_{t-s}=c(t-s)^{1 / 3}$.
- $Z_{t}(s)=\sum_{u \in \mathbb{N}_{s}} w_{t-s}\left(X_{u}(s)\right)=\sum_{u \in \mathbb{N}_{s}} L_{t}(s) \sin \left(\pi X_{u}(s) / L_{t}(s)\right) e^{X_{u}(s)-L_{t}(s)}$.
- $(\Xi(s))_{s \geq 0}$: CSBP with branching mechanism $\psi(u)=a u+\frac{2}{3} u \log u$, for some $a \in \mathbb{R}$.

Theorem (MS22)

$Z_{t}(0) \rightarrow z_{0}>0, L_{t}-R(0) \rightarrow \infty$. Then, $\left(Z_{t}\left(t\left(1-e^{-s}\right)\right)\right)_{s \geq 0} \Rightarrow(\Xi(s))_{s \geq 0}$ under $\mathbb{P}_{x}(\cdot \mid \zeta>t)$.

Theorem (MS22)

Under the same assumptions,

$$
\mathbb{P}(\zeta>t) \rightarrow \mathbb{P}\left(\Xi(s) \rightarrow \infty, \text { as } s \rightarrow \infty \mid \Xi(0)=z_{0}\right)=1-\exp \left(-\alpha z_{0}\right) .
$$

Workhorse: the process $Z_{t}(s)$

- $L_{t}(s)=L_{t-s}=c(t-s)^{1 / 3}$.
- $Z_{t}(s)=\sum_{u \in \mathbb{N}_{s}} w_{t-s}\left(X_{u}(s)\right)=\sum_{u \in \mathbb{N}_{s}} L_{t}(s) \sin \left(\pi X_{u}(s) / L_{t}(s)\right) e^{X_{u}(s)-L_{t}(s)}$.
- $(\Xi(s))_{s \geq 0}$: CSBP with branching mechanism $\psi(u)=a u+\frac{2}{3} u \log u$, for some $a \in \mathbb{R}$.

Theorem (MS22)

Suppose $x=x(t)$ such that $L_{t}-x \rightarrow \infty$. Then there exists a non-degenerate stochastic process $(\Phi(s))_{s \geq 0}$, such that the following convergence in law holds (w.r.t finite-dimensional distributions):

$$
\left(Z_{t}\left(t\left(1-e^{-s}\right)\right)\right)_{s \geq 0} \Longrightarrow(\Phi(s))_{s \geq 0}, \quad \text { under } \mathbb{P}_{x}(\cdot \mid \zeta>t)
$$

$(\Phi(s))_{s \geq 0}$ is the process $(\Xi(s))_{s \geq 0}$, started from 0 and conditioned to go to ∞, i.e. the descendance of a "prolific individual" Bertoin-Fontbona-Martínez 2008

An auxiliary process with spine

Branching Brownian motion with a distinguished particle (the spine):

- Starts at time zero from a single particle, the spine, at a point $x \in\left[0, L_{t}\right]$.
- For $s \in[0, t]$, define

$$
\tau(s)=\int_{0}^{s} \frac{1}{L_{t}(u)^{2}} d u
$$

The spine's trajectory is equal in law to the process $\left(L_{t}(s) K(\tau(s))\right)_{s \in[0, t]}$, where $(K(u))_{u \geq 0}$ is the Brownian taboo process on $[0,1]$ (next slide) started at $x / L_{t}(0)$.

- The spine branches at the accelerated rate $(m+1) \beta$ and according to the size-biased offspring distribution.
- One of these offspring is chosen randomly to continue as the spine. The others spawn independent copies of the original process started at their positions.

Brownian taboo process Knight 1969

"Brownian motion conditioned to stay in the interval $[0,1]$ "
Doob h-transform of Brownian motion killed when it exists the interval [0, 1] w.r.t. the $-\left(\pi^{2} / 2\right)$-harmonic function $h(x)=\sin (\pi x)$

Infinitesimal generator: $\frac{1}{2} \partial_{x}^{2}+\pi \cot (\pi x) \partial_{x}$
Boundary $\{0,1\}$ is entrance-not-exit

Small time: conditioning = spine

Lemma

Suppose $x=x(t)$ such that $L_{t}-x \rightarrow \infty$. Let μ_{s} be the law of the original process conditioned on $\{\zeta>t\}$, and let ν_{s} be the law of the process with spine, both starting with one particle at x. Then for every $\varepsilon>0$, there exists $\delta>0$ such that for sufficiently large t, we have

$$
d_{T V}\left(\mu_{\delta t}, \nu_{\delta t}\right) \leq \varepsilon,
$$

where $d_{T V}$ is the total variation distance between measures.
Proof uses a measure change w.r.t. $Z_{t}(\delta t)$. Recall: $\mathbb{P}\left(\zeta>t \mid \mathcal{F}_{\delta t}\right) \approx \alpha Z_{t}(\delta t)$.

Proof of theorem

- $\mathfrak{M}=\max _{s \geq 0} R(s), \mathfrak{m}=\arg \max _{s \geq 0} R(s)$
- $x=x(t)$ such that $L_{t}-x \gg t^{1 / 6} \asymp L_{t}^{1 / 2}$
- To show: $\left(\frac{L_{t}-\mathfrak{M}}{L_{t}^{1 / 2}}, L_{t}^{1 / 2} \frac{\mathfrak{m}}{t}\right) \Rightarrow(R, 3 U R)$, conditioned on $\zeta>t$. R Rayleigh, U uniform.

Proof steps

1. Conditioning \rightarrow auxiliary process with spine
2. Maximum, argmax \approx maximum, argmax of spine
3. Use excursion theory for Brownian taboo process

Step 3

Recall: spine is $L_{t}(s)(1-K(\tau(s))), \tau(s)=\int_{0}^{s} \frac{1}{L_{t}(u)^{2}} d u$

$$
\mathfrak{M}=\max _{s \geq 0} L_{t}(s)(1-K(\tau(s))), \mathfrak{m}=\arg \max _{s \geq 0} L_{t}(s)(1-K(\tau(s)))
$$

Linearization

$$
\left(\frac{L_{t}-\mathfrak{M}}{L_{t}^{1 / 2}}, L_{t}^{1 / 2} \frac{\mathfrak{m}}{t}\right) \approx \sqrt{\frac{\pi^{2}}{2}}\left(\frac{1}{\sqrt{\gamma}} \min _{s \geq 0}\{K(s)+\gamma s\}, 3 \sqrt{\gamma} \underset{s \geq 0}{\operatorname{argmin}}\{K(s)+\gamma s\}\right), \gamma=\frac{\pi^{2}}{2 L_{t}}
$$

Step 3

Recall: spine is $L_{t}(s)(1-K(\tau(s))), \tau(s)=\int_{0}^{s} \frac{1}{L_{t}(u)^{2}} d u$
$\mathfrak{M}=\max _{s \geq 0} L_{t}(s)(1-K(\tau(s))), \mathfrak{m}=\arg \max _{s \geq 0} L_{t}(s)(1-K(\tau(s)))$

Linearization

$$
\left(\frac{L_{t}-\mathfrak{M}}{L_{t}^{1 / 2}}, L_{t}^{1 / 2} \frac{\mathfrak{m}}{t}\right) \approx \sqrt{\frac{\pi^{2}}{2}}\left(\frac{1}{\sqrt{\gamma}} \min _{s \geq 0}\{K(s)+\gamma s\}, 3 \sqrt{\gamma} \underset{s \geq 0}{\operatorname{argmin}}\{K(s)+\gamma s\}\right), \gamma=\frac{\pi^{2}}{2 L_{t}}
$$

Decompose into excursions below 1/2

$\left(\frac{1}{\sqrt{\gamma}} \min _{s \geq 0}\{K(s)+\gamma s\}, \sqrt{\gamma} \underset{s \geq 0}{\operatorname{argmin}}\{K(s)+\gamma s\}\right) \approx\left(\frac{1}{\sqrt{\gamma}} \min _{\left(s, H_{s}\right) \in \Pi}\left(H_{s}+\gamma s\right), \sqrt{\gamma} \underset{\left(s, H_{s}\right) \in \Pi}{\operatorname{argmin}}\left(H_{s}+\gamma s\right)\right)$,
where Π is a Poisson point process on $\mathbb{R}_{+} \times[0,1 / 2]$ with intensity measure $d u \otimes \nu$, with $\nu(0, h)=\pi \tan (\pi h)$ Lambert 2000.

A Poisson process calculation

Change variables $u=\sqrt{\gamma} s, H_{u}=H_{s} / \sqrt{\gamma}$.

$$
\left(\frac{1}{\sqrt{\gamma}} \min _{\left(s, H_{s}\right) \in \Pi}\left(H_{s}+\gamma s\right), \sqrt{\gamma} \underset{\left(s, H_{s}\right) \in \Pi}{\operatorname{argmin}}\left(H_{s}+\gamma s\right)\right)=\left(\min _{\left(u, H_{u}\right) \in \Pi_{\gamma}}\left(H_{u}+u\right), \underset{\left(u, H_{u}\right) \in \Pi_{\gamma}}{\operatorname{argmin}}\left(H_{u}+u\right)\right)
$$

where Π_{γ} is a Poisson point process with intensity measure $d u / \sqrt{\gamma} \otimes(1 / \sqrt{\gamma})_{*} \nu$.

$$
\begin{gathered}
\Pi_{\gamma} \stackrel{\gamma \rightarrow 0}{\Longrightarrow} \operatorname{PPP}\left(d u \otimes \pi^{2} d h\right) \\
\left(\min _{\left(u, H_{u}\right) \in \Pi} H_{u}, \underset{\left(u, H_{u}\right) \in \Pi}{\operatorname{argmin}} H_{u}\right) \sim \sqrt{\frac{2}{\pi^{2}}}(R, U R)
\end{gathered}
$$

Thank you for your attention!

