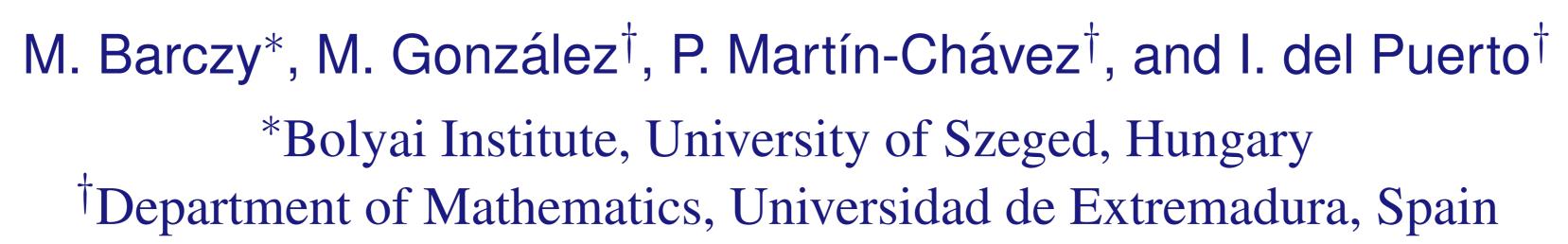


Diffusion Approximation of Controlled Multi-type Branching Processes



Emails: barczy@math.u-szeged.hu, mvelasco@unex.es, pedromc@unex.es, idelpuerto@unex.es

NIVERSIDAD DE EXTREMADURA

1. Introduction

Multi-type branching processes can be well-applied to describe evolutionary systems in which different types of elements coexist. We focus on the class of Controlled Multi-type Branching Processes (CMBPs) whose key feature is that the number of parents of each type at a given generation is determined by a random control mechanism that depends on the number of individuals of different types in the previous generation.

Aim

We study the asymptotic behaviour of CMBPs. A Feller type diffusion approximation for some CMBPs is derived, obtaining a natural extension of the single-type functional limit theorem by González et al. (2023) to the multi-type age. The results presented here are gethered in Deresty et al. (2022)

3. Results

Let $\mathbf{D}(\mathbb{R}_+, \mathbb{R}^p)$ be the space of \mathbb{R}^p -valued càdlàg functions on \mathbb{R}_+ with the Skorokhod metric and $\xrightarrow{\mathcal{L}}$ the weak convergence of distributions of stochastic processes on the space. Let us denote the convergence in probability by $\xrightarrow{\mathbb{P}}$ and consider the operator $\odot : \mathbb{R}^p \times (\mathbb{R}^{p \times p})^p \to \mathbb{R}^{p \times p}, \mathbf{z} \odot \mathbf{\Sigma} := \sum_{i=1}^p z_i \Sigma_i$ for $\mathbf{z} = (z_1, \ldots, z_p)^\top \in \mathbb{R}^p$ and $\mathbf{\Sigma} = (\Sigma_1, \ldots, \Sigma_p) \in (\mathbb{R}^{p \times p})^p$.

Main Scaling Limit Result

Theorem. Suppose that Hypotheses 1–6 hold for the CMBP $(\mathbf{Z}_k)_{k \in \mathbb{Z}_+}$ given in (1). Then

2. Probability Model

Definition

For a fixed $p \in \mathbb{N}$, let us consider a Controlled *p*-type Branching Process $(\mathbf{Z}_k)_{k \in \mathbb{Z}_+}$, defined recursively as

$$\boldsymbol{Z}_{k+1} \coloneqq \sum_{i=1}^{p} \sum_{j=1}^{\phi_{k,i}(\boldsymbol{Z}_k)} \boldsymbol{X}_{k,j,i}, \qquad k \in \mathbb{Z}_+,$$
(1)

where $\mathbf{Z}_k =: (Z_{k,1}, \ldots, Z_{k,p})^\top$, $\phi_k(\mathbf{z}) =: (\phi_{k,1}(\mathbf{z}), \ldots, \phi_{k,p}(\mathbf{z}))^\top$, with $\mathbf{z} \in \mathbb{Z}_+^p$, and $\mathbf{X}_{k,j,i} =: (X_{k,j,i,1}, \ldots, X_{k,j,i,p})^\top$ are \mathbb{Z}_+^p -valued random vectors. Assume that $\{\mathbf{Z}_0, \phi_k(\mathbf{z}), \mathbf{X}_{k,j,i} : k \in \mathbb{Z}_+, j \in \mathbb{N}, \mathbf{z} \in \mathbb{Z}_+^p, i \in \{1, \ldots, p\}\}$ are independent, the control distributions $\{\phi_k(\mathbf{z}) : k \in \mathbb{Z}_+\}$ are identically distributed for each $\mathbf{z} \in \mathbb{Z}_+^p$ and the offspring distributions $\{\mathbf{X}_{k,j,i} : k \in \mathbb{Z}_+, j \in \mathbb{N}\}$ are also identically distributed for each $i \in \{1, \ldots, p\}$.

Intuitive Interpretation

- $Z_{k,i}$ is the number of *i*-type individuals in the *k*-th generation.
- $\phi_{k,i}(\mathbf{Z}_k)$ is the number of *i*-type progenitors in the *k*-th generation.
- $X_{k,j,i,l}$ is the number of *l*-type offsprings of the *j*-th *i*-type progenitor in the *k*-th generation.

Some Particular Cases of Controlled Multi-type Branching Processes • Multi-type Branching Process with Immigration (MBPI), $(\boldsymbol{Y}_k)_{k\in\mathbb{Z}_+}$, given by

 $p \quad Y_{k,i}$

 $(n^{-1}\boldsymbol{Z}_{\lfloor nt \rfloor})_{t \in \mathbb{R}_+} \xrightarrow{\mathcal{L}} (\mathcal{Z}_t \tilde{\boldsymbol{u}})_{t \in \mathbb{R}_+} \quad as \ n \to \infty,$

where $(\mathcal{Z}_t)_{t \in \mathbb{R}_+}$ is the pathwise unique strong solution of the SDE

$$\mathrm{d}\mathcal{Z}_t = \tilde{\boldsymbol{v}}^\top \mathsf{m}\boldsymbol{\alpha} \,\mathrm{d}t + \sqrt{\tilde{\boldsymbol{v}}^\top ((\Lambda \tilde{\boldsymbol{u}}) \odot \boldsymbol{\Sigma}) \tilde{\boldsymbol{v}} \mathcal{Z}_t^+} \,\mathrm{d}\mathcal{W}_t, \qquad t \in \mathbb{R}_+,$$

with initial value $\mathcal{Z}_0 = 0$, where $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process.

Applications

Diffusion Approximation of Multi-type Branching Processes with Immigration

Corollary 1 [Ispány and Pap (2014)]. Let $(\boldsymbol{Y}_k)_{k \in \mathbb{Z}_+}$ be a critical primitive *p*-type branching process with immigration, i.e. a MBPI defined in (2) such that the offspring mean matrix $\mathbf{m}_{\boldsymbol{\xi}} := (\mathbb{E}[\boldsymbol{\xi}_{0,1,1}], \dots, \mathbb{E}[\boldsymbol{\xi}_{0,1,p}]) \in \mathbb{R}^{p \times p}_+$ is primitive with Perron–Frobenius eigenvalue 1. Let \boldsymbol{u} and \boldsymbol{v} be, respectively, its right and left Perron–Frobenius eigenvectors, $\boldsymbol{m}_{\boldsymbol{I}} := \mathbb{E}[\boldsymbol{I}_1] \in \mathbb{R}^p_+$ and $\boldsymbol{V} := (\operatorname{Var}[\boldsymbol{\xi}_{0,1,1}], \dots, \operatorname{Var}[\boldsymbol{\xi}_{0,1,p}]) \in (\mathbb{R}^{p \times p})^p$. Assume $\mathbb{E}[\|\boldsymbol{Y}_0\|^2] < \infty$, $\mathbb{E}[\|\boldsymbol{\xi}_{0,1,i}\|^4] < \infty$, $i \in \{1, \dots, p\}$, and $\mathbb{E}[\|\boldsymbol{I}_1\|^4] < \infty$. Then

$$(n^{-1}\boldsymbol{Y}_{\lfloor nt \rfloor})_{t \in \mathbb{R}_+} \xrightarrow{\mathcal{L}} (\mathcal{Y}_t \boldsymbol{u})_{t \in \mathbb{R}_+} \quad as \ n \to \infty,$$

where $(\mathcal{Y}_t)_{t \in \mathbb{R}_+}$ is the pathwise unique strong solution of the SDE

$$d\mathcal{Y}_t = \boldsymbol{v}^\top \boldsymbol{m}_{\boldsymbol{I}} dt + \sqrt{\boldsymbol{v}^\top (\boldsymbol{u} \odot \boldsymbol{V}) \boldsymbol{v} \mathcal{Y}_t^+} d\mathcal{W}_t, \qquad t \in \mathbb{R}_+,$$

with initial value $\mathcal{Y}_0 = 0$, where $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process.

Diffusion Approximation of 2–Sex Branching Processes with Immigration

Corollary 2. Let $(F_k, M_k)_{k \in \mathbb{Z}_+}$ be a 2SBPI defined in (3) with the promiscuous mating function, $L(x, y) := \int_{\mathbb{Z}_+} \int_{\mathbb{Z}_+}$

$$\boldsymbol{Y}_{k+1} \coloneqq \sum_{i=1}^{k} \sum_{j=1}^{k} \boldsymbol{\xi}_{k,j,i} + \boldsymbol{I}_{k+1}, \qquad k \in \mathbb{Z}_{+},$$
(2)

where $\{Y_0, \xi_{k,j,i}, I_k : k \in \mathbb{Z}_+, j \in \mathbb{N}, i \in \{1, \dots, p\}\}$ are independent \mathbb{Z}_+^p -valued random vectors, $\{\xi_{k,j,i} : k \in \mathbb{Z}_+, j \in \mathbb{N}\}$ are identically distributed for each $i \in \{1, \dots, p\}$ (offspring distributions) and $\{I_k : k \in \mathbb{Z}_+\}$ are also identically distributed (immigration distribution).

• 2–Sex Branching Process with Immigration (2SBPI), $(F_k, M_k)_{k \in \mathbb{Z}_+}$, given by

$$U_k := L(F_k, M_k), \qquad k \in \mathbb{Z}_+,$$

$$(F_{k+1}, M_{k+1}) := \sum_{j=1}^{U_k} (f_{k,j}, m_{k,j}) + (F_{k+1}^I, M_{k+1}^I), \qquad k \in \mathbb{Z}_+,$$
(3)

where (F_0, M_0) is the random initial generation, $\{(F_0, M_0), (f_{k,j}, m_{k,j}), (F_k^I, M_k^I) : k \in \mathbb{Z}_+, j \in \mathbb{N}\}$ are independent \mathbb{Z}^2_+ -valued random vectors, $\{(f_{k,j}, m_{k,j}) : k \in \mathbb{Z}_+, j \in \mathbb{N}\}$ are identically distributed (offspring distribution), and $\{(F_k^I, M_k^I) : k \in \mathbb{Z}_+\}$ are also identically distributed (immigration distribution). Further, $(U_k)_{k \in \mathbb{Z}_+}$ is a sequence of mating units corresponding to the mating function $L : \mathbb{Z}_+ \times \mathbb{Z}_+ \to \mathbb{Z}_+$.

Notation and Assumptions

We suppose that $\mathbb{E}[\|\boldsymbol{X}_{0,1,i}\|^4] < \infty$ for i = 1, ..., p and $\mathbb{E}[\|\boldsymbol{\phi}_0(\boldsymbol{z})\|^4] < \infty$ for $\boldsymbol{z} \in \mathbb{Z}_+^p$, and we denote $\boldsymbol{m}_i := \mathbb{E}[\boldsymbol{X}_{0,1,i}] \in \mathbb{R}_+^p, \boldsymbol{\varepsilon}(\boldsymbol{z}) := \mathbb{E}[\boldsymbol{\phi}_0(\boldsymbol{z})] \in \mathbb{R}_+^p, \boldsymbol{\Sigma}_i := \operatorname{Var}[\boldsymbol{X}_{0,1,i}] \in \mathbb{R}^{p \times p}, \boldsymbol{\Gamma}(\boldsymbol{z}) := \operatorname{Var}[\boldsymbol{\phi}_0(\boldsymbol{z})] \in \mathbb{R}^{p \times p}$ and $\kappa_i(\boldsymbol{z}) := \mathbb{E}[(\boldsymbol{\phi}_{0,i}(\boldsymbol{z}) - \varepsilon_i(\boldsymbol{z}))^4] \in \mathbb{R}_+$, where $i, l \in \{1, ..., p\}$ and $\boldsymbol{z} \in \mathbb{Z}_+^p$. Let us consider the matrix $\mathbf{m} := (\boldsymbol{m}_1, \dots, \boldsymbol{m}_p) \in \mathbb{R}_+^{p \times p}$.

Hypothesis 1. $E[\|\boldsymbol{Z}_0\|^2]$, $E[\|\boldsymbol{X}_{0,1,i}\|^4]$ and $E[\|\boldsymbol{\phi}_0(\boldsymbol{z})\|^4]$ are finite for each $i \in \{1, \ldots, p\}$ and $\boldsymbol{z} \in \mathbb{Z}_+^p$.

Hypothesis 2. There exist $\Lambda \in \mathbb{R}^{p \times p}$, $\alpha \in \mathbb{R}^{p}$ and a function $\boldsymbol{g} : \mathbb{Z}_{+}^{p} \to \mathbb{R}^{p}$ with $\|\boldsymbol{g}(\boldsymbol{z})\| = o(1)$ as $\|\boldsymbol{z}\| \to \infty$ such that $\boldsymbol{\varepsilon}(\boldsymbol{z}) = \Lambda \boldsymbol{z} + \boldsymbol{\alpha} + \boldsymbol{g}(\boldsymbol{z}), \boldsymbol{z} \in \mathbb{Z}_{+}^{p}$.

Hypothesis 3. $\|\Gamma(\boldsymbol{z})\| = o(\|\boldsymbol{z}\|)$ as $\|\boldsymbol{z}\| \to \infty$.

 $x \min\{1, y\}, x, y \in \mathbb{Z}_+$. Assume that (F_0, M_0) is a \mathbb{N}^2 -valued random vector, $\mathbb{E}[||(F_0, M_0)||^2] < \infty$, $\mathbb{E}[||(F_{0,1}, m_{0,1})||^4] < \infty$, and $\mathbb{E}[||(F_1^I, M_1^I)||^4] < \infty$. If $\mathbb{P}[M_1^I = 0] = 0$ and $\mathbb{E}[f_{0,1}] = 1$, then

$$(n^{-1}(F_{\lfloor nt \rfloor}, M_{\lfloor nt \rfloor}))_{t \in \mathbb{R}_+} \xrightarrow{\mathcal{L}} (\mathcal{X}_t(1, \mathbb{E}[m_{0,1}]))_{t \in \mathbb{R}_+} \quad as \ n \to \infty,$$

where $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is the pathwise unique strong solution of the SDE

$$d\mathcal{X}_t = E\left[F_1^I\right] dt + \sqrt{\operatorname{Var}\left[f_{0,1}\right]\mathcal{X}_t^+} d\mathcal{W}_t, \qquad t \in \mathbb{R}_+,$$

with initial value $\mathcal{X}_0 = 0$, where $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process.

Corollary 3. Let $(F_k, M_k)_{k \in \mathbb{Z}_+}$ be a 2SBPI defined in (3) with the self-fertilization mating function, $L(z) := z_1 + z_2$, $z = (z_1, z_2) \in \mathbb{R}^2_+$. Assume that $\mathbb{E}[||(F_0, M_0)||^2] < \infty$, $\mathbb{E}[||(f_{0,1}, m_{0,1})||^4] < \infty$, $\mathbb{E}[||(F_1^I, M_1^I)||^4] < \infty$, and $\mathbb{E}[f_{0,1}]$, $\mathbb{E}[m_{0,1}] \in (0, 1)$ are such that $\mathbb{E}[f_{0,1}] + \mathbb{E}[m_{0,1}] = 1$. Then

$$(n^{-1}(F_{\lfloor nt \rfloor}, M_{\lfloor nt \rfloor}))_{t \in \mathbb{R}_+} \xrightarrow{\mathcal{L}} (\mathcal{X}_t(\mathrm{E}[f_{0,1}], \mathrm{E}[m_{0,1}]))_{t \in \mathbb{R}_+} \quad as \ n \to \infty,$$

where $(\mathcal{X}_t)_{t \in \mathbb{R}_+}$ is the pathwise unique strong solution of the SDE

 $d\mathcal{X}_t = \left(\mathbb{E} \left[F_1^I \right] + \mathbb{E} \left[M_1^I \right] \right) \, dt + \sqrt{\operatorname{Var} \left[f_{0,1} + m_{0,1} \right] \mathcal{X}_t^+} \, d\mathcal{W}_t, \qquad t \in \mathbb{R}_+,$

with initial value $\mathcal{X}_0 = 0$, where $(\mathcal{W}_t)_{t \in \mathbb{R}_+}$ is a standard Wiener process.

Limit Distribution for the Relative Frequencies of distinct types of individuals

Corollary 4. Suppose that Hypotheses 1–4 and 6 hold for the CMBP $(\mathbf{Z}_k)_{k \in \mathbb{Z}_+}$ given in (1). Assume also that the matrix \tilde{m} is primitive with Perron–Frobenius eigenvalue 1, and $\Lambda \tilde{\boldsymbol{u}} \in \mathbb{R}^p_+$. If, in addition, $\tilde{\boldsymbol{v}}^\top \mathbf{m} \boldsymbol{\alpha} > 0$, then for all t > 0 and $i, j \in \{1, \ldots, p\}$, we get

$$e \stackrel{\top}{\cdot} Z_{\perp} \downarrow \rho = e^{\top} \tilde{u}$$
 $e \stackrel{\top}{\cdot} Z_{\perp} \downarrow \rho$

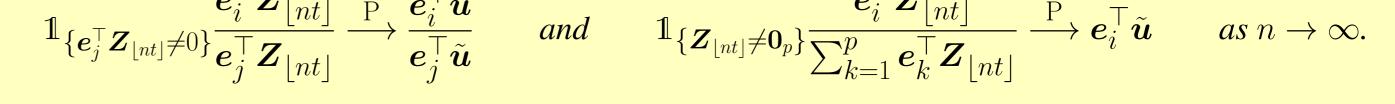
Hypothesis 4. $\kappa_i(\boldsymbol{z}) = O(\|\boldsymbol{z}\|^2)$ as $\|\boldsymbol{z}\| \to \infty$ for i = 1, ..., p.

Hypothesis 5. The matrix $\tilde{m} := m\Lambda$ belongs to $\mathbb{R}^{p \times p}_{+}$, $\tilde{\rho} := 1$ is an eigenvalue of \tilde{m} having algebraic and geometric multiplicities 1, and the absolute values of the other eigenvalues of \tilde{m} are less than 1. There exist a unique right eigenvector $\tilde{\boldsymbol{u}} \in \mathbb{R}^{p}_{+}$ and a unique left eigenvector $\tilde{\boldsymbol{v}} \in \mathbb{R}^{p}_{+}$ corresponding to $\tilde{\rho} = 1$ such that $\tilde{u}_{1} + \ldots + \tilde{u}_{p} = 1$, $\Lambda \tilde{\boldsymbol{u}} \in \mathbb{R}^{p}_{+}$ and $\tilde{\boldsymbol{v}}^{\top} \tilde{\boldsymbol{u}} = 1$. Finally, $\lim_{k \to \infty} \tilde{m}^{k} = \tilde{\Pi}$ and there exist $\tilde{c} \in \mathbb{R}_{++}$ and $\tilde{r} \in (0, 1)$ such that $\|\tilde{m}^{k} - \tilde{\Pi}\| \leq \tilde{c}\tilde{r}^{k}$ for each $k \in \mathbb{N}$, where $\tilde{\Pi} := \tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\top}$.

Hypothesis 6. For all $\epsilon > 0$ and B > 0, there exists $k_0(\epsilon, B) \in \mathbb{N}$ such that $\mathbb{P}[\|\mathbf{Z}_k\| \leq B] \leq \epsilon$ for each $k \geq k_0(\epsilon, B), k \in \mathbb{N}$.

Remark.

- If the matrix \tilde{m} is primitive, its Perron–Frobenius eigenvalue $\tilde{\rho}$ equals 1, and $\Lambda \tilde{u} \in \mathbb{R}^p_+$, where \tilde{u} is the right Perron–Frobenius eigenvector of \tilde{m} corresponding to $\tilde{\rho}$, then Hypothesis 5 holds.
- A sufficient condition for Hypothesis 6 is the almost sure explosion of the process, i.e. $P[\|\boldsymbol{Z}_k\| \to \infty \text{ as } k \to \infty] = 1.$
- In case of $g \equiv 0_p$, the Hypothesis 6 is not necessary.



References

Barczy, M., González, M., Martín-Chávez, P., & del Puerto, I. (2023). Diffusion approximation of critical controlled multi-type branching processes. arXiv:2304.06958 [math.PR]

González, M., Martín-Chávez, P., & del Puerto, I. (2023). Diffusion approximation of controlled branching processes using limit theorems for random step processes. *Stochastic Models*, 39(1), 232–248

Ispány, M., & Pap, G. (2014). Asymptotic Behavior of Critical Primitive Multi-Type Branching Processes with Immigration. *Stochastic Analysis and Applications*, 32(5), 727–741

ACKNOWLEDGEMENTS: M. Barczy is supported by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, project No. TKP2021-NVA-09. M. González, P. Martín-Chávez and I. del Puerto are supported by grant PID2019-108211GB-I00 funded by MCIN/AEI/10.13039/501100011033, by "ERDF A way of making Europe". P. Martín-Chávez is also grateful to the Ministry of Universities of Spain for support from a predoctoral fellowship Grant No. FPU20/06588.