Old and new results on local limits of conditioned trees

R. Abraham

Angers 2023

R	Δ	h	ra	ha	m
			iu	Πü	

Local limits of conditioned GW

Angers 2023

Outline

The set of trees

- Conditioning a Galton-Watson tree to be large
- A more restrictive conditioning
- 4) The Brownian case

イロト イポト イヨト イヨト

Notations for discrete trees

Set of nodes
$$\mathcal{U} = igcup_{n \in \mathbb{N}} (\mathbb{N}^*)^n$$
. For a node $u \in \mathbf{t}$, we set

- number of children : $k_u(\mathbf{t})$ (< ∞ for the moment)
- height : h(u)

For the tree t:

- height : $H(\mathbf{t}) = \max\{h(u), u \in \mathbf{t}\}$
- number of vertices=size of t : |t|
- size of the n^{th} generation : $Z_n(\mathbf{t})$

The local topology

Truncation of a tree **t** at level $h \in \mathbb{N}$:

$$r_h(\mathbf{t}) = \{ u \in \mathbf{t}, \ h(u) \leq h \}.$$

◆□▶ ◆舂▶ ◆注▶ ◆注▶

The local topology

Truncation of a tree **t** at level $h \in \mathbb{N}$:

$$r_h(\mathbf{t}) = \{ u \in \mathbf{t}, h(u) \leq h \}.$$

Local distance between two discrete trees :

$$d(\mathbf{t},\mathbf{t}') = 2^{-\sup\{h, r_h(\mathbf{t})=r_h(\mathbf{t}')\}}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The local topology

Truncation of a tree **t** at level $h \in \mathbb{N}$:

$$r_h(\mathbf{t}) = \{ u \in \mathbf{t}, h(u) \leq h \}.$$

Local distance between two discrete trees :

$$d(\mathbf{t},\mathbf{t}') = 2^{-\sup\{h, r_h(\mathbf{t})=r_h(\mathbf{t}')\}}.$$

$$\begin{split} \mathbf{t}_n \longrightarrow \mathbf{t} \iff \forall h > 0, \ r_h(\mathbf{t}_n) = r_h(\mathbf{t}) & \text{for } n \text{ large enough} \\ \iff \forall u \in \mathcal{U}, \ k_u(\mathbf{t}_n) \longrightarrow k_u(\mathbf{t}) \end{split}$$

with the convention $k_u(\mathbf{t}) = -1$ if $u \notin \mathbf{t}$.

4/31

Outline

2 Conditioning a Galton-Watson tree to be large

A more restrictive conditioning

4) The Brownian case

イロト イポト イヨト イヨト

Conditioning on non-extinction

Theorem (Kesten, 1986)

Let p be a critical or sub-critical offspring distribution (mean $\mu \le 1$). Let τ_n be a GW(p)-tree conditioned on $H(\tau_n) = n$. Then

 $\tau_n \xrightarrow{(d)} \tau^*.$

ヘロン 人間 とくほ とくほ とう

Conditioning on non-extinction

Theorem (Kesten, 1986)

Let p be a critical or sub-critical offspring distribution (mean $\mu \le 1$). Let τ_n be a GW(p)-tree conditioned on $H(\tau_n) = n$. Then

$$\tau_n \xrightarrow{(d)} \tau^*.$$

Definition of τ^* as a size-biased GW-tree:

$$\forall h > 0, \forall \phi, \mathbb{E}[\phi(r_h(\tau^*))] = \mathbb{E}\left[\frac{Z_h}{\mu^h}\phi(r_h(\tau))\right].$$

• The nodes are either normal or special.

イロト イポト イヨト イヨト

- The nodes are either normal or special.
- The root is special.

R. Abraha

		· - · · · ·	
ım	Local limits of conditioned GW		Angers 2023

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.

< < > < < > <

(E) < E)</p>

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_unp(n).

(E) < E)</p>

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p^{*}(n) := ¹/_μnp(n).
- Children of normal nodes are all normal.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p*(n) := ¹/_unp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p*(n) := ¹/_unp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p*(n) := ¹/_unp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

- The nodes are either normal or special.
- The root is special.
- Normal nodes reproduce according the the distribution *p*.
- Special nodes reproduce according to the size-biased distribution p*(n) := ¹/_unp(n).
- Children of normal nodes are all normal.
- Children of a special nodes are all normal but one, uniformly chosen at random, which is special.

Spinal description of Kesten's tree

• The tree τ^* is a spine decorated with independent GW(p)-trees.

イロト イポト イヨト イヨト

Spinal description of Kesten's tree

- The tree τ^* is a spine decorated with independent GW(p)-trees.
- At each node u of the spine, Y_u trees are grafted with

$$\mathbb{P}(Y_u = n-1) = p^*(n) = \frac{1}{\mu}np(n).$$

イロト イロト イヨト イヨト

Spinal description of Kesten's tree

- The tree τ^* is a spine decorated with independent GW(p)-trees.
- At each node u of the spine, Y_u trees are grafted with

$$\mathbb{P}(Y_u=n-1)=p^*(n)=\frac{1}{\mu}np(n).$$

Given the Y_u = n − 1, the number of trees grafted on the left is uniformly distributed on {0,..., n − 1}.

General functionals

Notation: **t**, $\tilde{\mathbf{t}}$ two trees, x a leaf of **t**. $\mathbf{t} \circledast_x \tilde{\mathbf{t}}$ is the tree obtained by grafting the tree $\tilde{\mathbf{t}}$ on **t** at x.

イロト イポト イヨト イヨト

General functionals

Notation: **t**, $\tilde{\mathbf{t}}$ two trees, x a leaf of **t**. $\mathbf{t} \circledast_x \tilde{\mathbf{t}}$ is the tree obtained by grafting the tree $\tilde{\mathbf{t}}$ on **t** at x.

Let *A* be an integer-valued functional on discrete trees. Assumption : *A* is additive if there exists a function $D(\mathbf{t}, x) \ge 0$ such that

$$A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\tilde{\mathbf{t}}) + D(\mathbf{t}, x)$$

for $A(\tilde{\mathbf{t}})$ large enough.

General functionals

Notation: **t**, $\tilde{\mathbf{t}}$ two trees, x a leaf of **t**. $\mathbf{t} \circledast_x \tilde{\mathbf{t}}$ is the tree obtained by grafting the tree $\tilde{\mathbf{t}}$ on **t** at x.

Let *A* be an integer-valued functional on discrete trees. Assumption : *A* is additive if there exists a function $D(\mathbf{t}, x) \ge 0$ such that

$$A(\mathbf{t} \circledast_x \tilde{\mathbf{t}}) = A(\tilde{\mathbf{t}}) + D(\mathbf{t}, x)$$

for $A(\tilde{\mathbf{t}})$ large enough.

Theorem (A.-Delmas, 2014)

Let p be a critical offspring distribution. If

$$\lim_{n \to +\infty} \frac{\mathbb{P}(A(\tau) = n+1)}{\mathbb{P}(A(\tau) = n)} = 1.$$

Then

$$\operatorname{dist}(\tau|A(\tau)=n) \longrightarrow \operatorname{dist}(\tau^*)$$

R. Abraham

Local limits of conditioned GW

• Height of the tree $:H(\mathbf{t} \otimes_x \tilde{\mathbf{t}}) = H(\tilde{\mathbf{t}}) + h(x)$.

イロト イポト イヨト イヨト

- Height of the tree : $H(\mathbf{t} \otimes_x \tilde{\mathbf{t}}) = H(\tilde{\mathbf{t}}) + h(x)$.
- Total progeny: $|\mathbf{t} \circledast_x \tilde{\mathbf{t}}| = |\tilde{\mathbf{t}}| + |\mathbf{t}| 1$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Height of the tree $:H(\mathbf{t} \otimes_x \tilde{\mathbf{t}}) = H(\tilde{\mathbf{t}}) + h(x).$
- Total progeny: $|\mathbf{t} \circledast_x \tilde{\mathbf{t}}| = |\tilde{\mathbf{t}}| + |\mathbf{t}| 1$.
- Number of leaves.

イロト イポト イヨト イヨト

- Height of the tree $:H(\mathbf{t} \otimes_x \tilde{\mathbf{t}}) = H(\tilde{\mathbf{t}}) + h(x).$
- Total progeny: $|\mathbf{t} \circledast_x \tilde{\mathbf{t}}| = |\tilde{\mathbf{t}}| + |\mathbf{t}| 1$.
- Number of leaves.
- Number of nodes with given out-degree. A ⊂ N.
 L_A(t) = Card{u ∈ t, k_u(t) ∈ A}.

イロト イポト イヨト イヨト

Outline

The set of trees

Conditioning a Galton-Watson tree to be large

A more restrictive conditioning

The Brownian case

イロト イポト イヨト イヨト

Very large geometric trees

Goal :
$$\lim_{n\to+\infty} dist(\tau|Z_n = a_n)$$
.

Offspring distribution :

$$\left\{egin{aligned} p(0) &= 1-\eta \ p(k) &= \eta q (1-q)^{k-1} & ext{for } k \geq 1. \end{aligned}
ight.$$

Very large geometric trees

Goal :
$$\lim_{n\to+\infty} dist(\tau|Z_n = a_n)$$
.

Offspring distribution :

$$egin{cases} p(0) = 1-\eta \ p(k) = \eta q (1-q)^{k-1} & ext{for } k \geq 1. \end{cases}$$

Set
$$c_n = \begin{cases} \mu^{-n} & \text{if } \mu = \eta/q < 1, \\ n^2 & \text{if } \mu = 1, \\ \mu^n & \text{if } \mu > 1. \end{cases}$$

Angers 2023

Result

Theorem (A.-Bouaziz-Delmas, 2020)

Suppose that $a_n > 0$ and $\lim_{n \to +\infty} \frac{a_n}{c_n} = \theta \in [0, +\infty]$ Then, the distribution of τ conditionally given $\{Z_n = a_n\}$ converges to the distribution of some random tree τ^{θ} .

イロト 人間 とくほ とくほ とう

Description of τ^0 and τ^∞

• τ^0 is the Kesten tree associated with $\tilde{p}(n) := \kappa_e^n p(n)$ where $\kappa_e = \min\left(\frac{1-\eta}{1-q}, 1\right)$ is the extinction probability.

Description of τ^0 and τ^∞

- τ^0 is the Kesten tree associated with $\tilde{p}(n) := \kappa_e^n p(n)$ where $\kappa_e = \min\left(\frac{1-\eta}{1-q}, 1\right)$ is the extinction probability.
- The tree τ[∞]:
 - Its root has infinite degree.
 - The sub-trees are i.i.d inhomogeneous GW trees with offspring distribution at height *h* given by

$$p_h^{\infty}(k) = \frac{\gamma_{h+1}^k}{\gamma_h} p(k)$$

where,

$$\gamma_h = \begin{cases} \frac{\kappa - \mu^h}{1 - \mu^h} & \text{if } \mu \neq 1 \\ 1 + \frac{q}{h(1 - q)} & \text{if } \mu = 1 \end{cases}$$

< □ → < □ → < □ → < 三 → < 三 → 三 Angers 2023

14/31

Description of τ^0 and τ^∞

- τ^0 is the Kesten tree associated with $\tilde{p}(n) := \kappa_e^n p(n)$ where $\kappa_e = \min\left(\frac{1-\eta}{1-q}, 1\right)$ is the extinction probability.
- The tree τ[∞]:
 - Its root has infinite degree.
 - The sub-trees are i.i.d inhomogeneous GW trees with offspring distribution at height *h* given by

$$p_h^{\infty}(k) = \frac{\gamma_{h+1}^k}{\gamma_h} p(k)$$

where,

$$\gamma_h = \begin{cases} \frac{\kappa - \mu^h}{1 - \mu^h} & \text{if } \mu \neq 1\\ 1 + \frac{q}{h(1 - q)} & \text{if } \mu = 1 \end{cases}$$

We have

$$\mu_h := \sum_{k=1}^{\infty} k p_h^{\infty}(k) > 1$$
 and $\lim_{h \to +\infty} \mu_h = \mu^{\pm 1}$.

Local limits of conditioned GW

< □ → < □ → < □ → < 三 → < 三 → 三 Angers 2023

The skeleton of τ^{θ}

Suppose we have k individuals at height h.

- Each individual gives birth to a single individual at height h+1.
- A *Poisson*(θζ_h) number of supplementary individuals appear and are attached uniformly on the *k* initial individuals.

•
$$\zeta_h = \begin{cases} cste \cdot \mu^{-h} & \text{if } \mu < 1, \\ cste & \text{if } \mu = 1. \\ cste \cdot \mu^h & \text{if } \mu > 1. \end{cases}$$

・ロト ・ 一 ト ・ ヨ ト ・

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

▲□▶▲□▶▲□▶▲□▶ ▲□ シスペ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

16/31

Grafting on the skeleton

• We graft GW trees with offspring distribution $\tilde{p}(n) = \kappa_e^n p(n)$.

3

Grafting on the skeleton

- We graft GW trees with offspring distribution $\tilde{p}(n) = \kappa_e^n p(n)$.
- On a node u of the skeleton with k children, Y_u GW trees are grafted with

$$\mathbb{P}(Y_u = n-k) = \tilde{p}_{[k]}(n) := c_k \frac{n!}{(n-k)!} \tilde{p}(n).$$

イロト イロト イヨト イヨト

Grafting on the skeleton

- We graft GW trees with offspring distribution $\tilde{p}(n) = \kappa_e^n p(n)$.
- On a node *u* of the skeleton with *k* children, *Y_u* GW trees are grafted with

$$\mathbb{P}(Y_u = n - k) = \tilde{p}_{[k]}(n) := c_k \frac{n!}{(n-k)!} \tilde{p}(n).$$

• Given the the number k of children in the skeleton and the number n - k of grafted trees, the k "immortal" children are chosen uniformly among the *n* children of *u*.

Continuity in distribution

Theorem

The family $(\tau^{\theta}, \theta \in [0, +\infty])$ is continuous in distribution. In particular

$$\tau^\theta \xrightarrow[\theta \to 0]{(d)} \tau^0, \qquad \tau^\theta \xrightarrow[\theta \to +\infty]{(d)} \tau^\infty.$$

Angers 2023

э

A combinatorial approach

 \mathbb{T}_N : set of planar trees with N vertices $\nu_N^{(\theta)}$ measure on \mathbb{T}_N defined by

$$\mathbf{v}_{N}^{(\mathbf{ heta})}(\mathbf{t}) = rac{1}{W_{N}^{(\mathbf{ heta})}} e^{\mathbf{ heta} H(\mathbf{t})}$$

with $\theta \in [0, +\infty)$.

イロト 人間 とくほ とくほ とう

3

٦

A combinatorial approach

 \mathbb{T}_N : set of planar trees with *N* vertices $v_N^{(\theta)}$ measure on \mathbb{T}_N defined by

$$w_N^{(heta)}(\mathbf{t}) = rac{1}{W_N^{(heta)}} e^{ heta H(\mathbf{t})}$$

with $\theta \in [0, +\infty)$.

Theorem (Durhuus-Ünel, 2023)

Let T_N be distributed according to $v_N^{(\theta)}$. Then,

$$T_N \xrightarrow{(d)} \tau^{\theta}$$

with $\eta = q = 1/2$ i.e. $p(n) = 2^{-(n+1)}$

Let *p* be a **super-critical** offspring distribution. Let *c_n* be the Heyde-Seneta normalization: $\frac{1}{c_n}Z_n \rightarrow W$. Under the *LLog L* condition, $c_n = \mu^n$.

Let *p* be a **super-critical** offspring distribution. Let *c_n* be the Heyde-Seneta normalization: $\frac{1}{c_n}Z_n \rightarrow W$. Under the *LLogL* condition, $c_n = \mu^n$.

Theorem (A.-Delmas, 2019)

If
$$\lim(a_n/c_n) = \theta$$
, then $(\tau | Z_n = a_n) \xrightarrow{(d)} \tau^{\theta}$
• τ^0 : Kesten
• τ^{θ} : infinite skeleton. $\tau^{\theta} \stackrel{(d)}{=} (\tau | W = \theta)$.
• τ^{∞} :
• If $b := \max Supp(p) < \infty$, regular b-ary tree.

• If $b = +\infty$, conjectured.

・ロト ・ 一 ト ・ ヨ ト ・

Let *p* be a **super-critical** offspring distribution. Let *c_n* be the Heyde-Seneta normalization: $\frac{1}{c_n}Z_n \rightarrow W$. Under the *LLogL* condition, $c_n = \mu^n$.

Theorem (A.-Delmas, 2019)

If
$$\lim(a_n/c_n) = \theta$$
, then $(\tau | Z_n = a_n) \xrightarrow{(d)} \tau^{\theta}$
• τ^0 : Kesten
• τ^{θ} : infinite skeleton. $\tau^{\theta} \stackrel{(d)}{=} (\tau | W = \theta)$.
• τ^{∞} :
• If $b := \max Supp(p) < \infty$, regular b-ary tree.
• If $b = +\infty$, conjectured.

Critical case: Kesten if $a_n \ll n^2$.

イロト イポト イヨト イヨト

20/31

Let *p* be a **super-critical** offspring distribution. Let *c_n* be the Heyde-Seneta normalization: $\frac{1}{c_n}Z_n \rightarrow W$. Under the *LLogL* condition, $c_n = \mu^n$.

Theorem (A.-Delmas, 2019)

If
$$\lim(a_n/c_n) = \theta$$
, then $(\tau | Z_n = a_n) \xrightarrow{(d)} \tau^{\theta}$
• τ^0 : Kesten
• τ^{θ} : infinite skeleton. $\tau^{\theta} \stackrel{(d)}{=} (\tau | W = \theta)$.
• τ^{∞} :
• If $b := \max Supp(p) < \infty$, regular b-ary tree.

• If $b = +\infty$, conjectured.

Critical case: Kesten if $a_n \ll n^2$.

Sub-critical case: only if can be obtained as a super-critical GW tree conditioned on extinction.

R. Abraham

Local limits of conditioned GW

Angers 2023

20/31

Outline

The set of trees

- 2) Conditioning a Galton-Watson tree to be large
- A more restrictive conditioning
- 4 The Brownian case

イロト イポト イヨト イヨト

Real trees

Definition

A real tree is a geodesic metric space which contains no subset homeomorphic to a circle.

< ロ ト < 同

A 3 >

Real trees

Definition

A real tree is a geodesic metric space which contains no subset homeomorphic to a circle.

Let *e* be a continuous function on $[0, \sigma]$ such that $e(0) = e(\sigma) = 0$ and e(t) > 0 for $t \in]0, \sigma[$.

We define a pseudo-metric on $[0,\sigma]$: $d(s,t) = e(s) + e(t) - 2\min_{u \in [s,t]} e(u)$ and the equivalence relation $s \sim t \iff d(s,t) = 0$.

イロト イポト イヨト イヨト 三日

Real trees

Definition

A real tree is a geodesic metric space which contains no subset homeomorphic to a circle.

Let *e* be a continuous function on $[0, \sigma]$ such that $e(0) = e(\sigma) = 0$ and e(t) > 0 for $t \in]0, \sigma[$.

We define a pseudo-metric on $[0,\sigma]$: $d(s,t) = e(s) + e(t) - 2\min_{u \in [s,t]} e(u)$ and the equivalence relation $s \sim t \iff d(s,t) = 0$.

Then the quotient space $([0,\sigma]/\sim,d)$ is a compact real tree rooted at 0 (or σ).

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Coding a tree by a continuous function

 $d(s,t) = e(s) + e(t) - 2\min_{u \in [s,t]} e(u)$

Angers 2023

23/31

Coding a tree by a continuous function

 $d(s,t) = e(s) + e(t) - 2\min_{u \in [s,t]} e(u)$

Angers 2023

23/31

The Brownian tree

thanks to Igor Kortchemski

Angers 2023

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

The Brownian tree

thanks to Igor Kortchemski

Theorem (Aldous 1991)

 τ_n : critical with finite variance GW tree conditioned on $|\tau_n| = n$.

$$(\tau_n, \frac{1}{\sigma\sqrt{n}}d_{gr}) \xrightarrow{(d)} T$$

for the Gromov-Hausdorff topology.

Angers 2023

24/31

The Brownian tree with drift

For $\theta \ge 0$, \mathbb{N}^{θ} is the "distribution" of the tree coded by an excursion of $B_t - 2\theta t$.

The Brownian tree with drift

For $\theta \ge 0$, \mathbb{N}^{θ} is the "distribution" of the tree coded by an excursion of $B_t - 2\theta t$. For $\theta < 0$, we define \mathbb{N}^{θ} by

$$\forall h > 0, \ \forall \phi, \qquad \mathbb{N}^{\Theta}[\phi(r_h(\mathcal{T}))] = \mathbb{N}^{|\Theta|}[e^{2\Theta Z_h}\phi(r_h(\mathcal{T}))]$$

where Z_h is the "local time" of T at height *h*.

The Brownian tree with drift

For $\theta \ge 0$, \mathbb{N}^{θ} is the "distribution" of the tree coded by an excursion of $B_t - 2\theta t$. For $\theta < 0$, we define \mathbb{N}^{θ} by

$$\forall h > 0, \forall \phi, \qquad \mathbb{N}^{\theta}[\phi(r_h(\mathcal{T}))] = \mathbb{N}^{|\theta|}[e^{2\theta Z_h}\phi(r_h(\mathcal{T}))]$$

where Z_h is the "local time" of T at height *h*.

 $(Z_h, h \ge 0)$: CSBP with branching mechanism

$$\psi_{\theta}(\lambda) = \frac{1}{2}\lambda^2 + \theta\lambda.$$

イロト イポト イヨト イヨト

Local limit of the conditioned tree

Set
$$c_h^{\theta} = \begin{cases} h^2 & \text{if } \theta = 0, \\ rac{1}{4\theta^2} e^{-|\theta|h} & \text{if } \theta \neq 0. \end{cases}$$

Theorem (A.-Delmas-He, 2023+)

Suppose that $a_h > 0$ and $\lim_{h \to +\infty} \frac{a_h}{c_h^{\theta}} = \alpha \in [0, +\infty)$. Then, under $\mathbb{N}^{\theta}[\cdot | Z_h = a_h]$ $\mathcal{T} \xrightarrow[h \to +\infty]{} \mathcal{T}^{\alpha, |\theta|}$

for the local Gromov-Hausdorff topology.

イロト イポト イヨト イヨト 一日

Kesten tree

The tree $\mathcal{T}^{0,|\theta|}$ is distributed as

$$[0,+\infty) \circledast_{i \in I} (h_i, T_i)$$

where $(h_i, \mathcal{T}_i)_{i \in I}$ are the atoms of Poisson point measure on $\mathbb{R}_+ \times \mathbb{T}$ with intensity

 $dh\mathbb{N}^{|\theta|}[d\mathcal{T}].$

Set $\xi_1 < \xi_2 < \cdots < \xi_n < \cdots$ the atoms of a Poisson point measure on \mathbb{R}_+ with intensity $\frac{1}{2} \alpha e^{|\theta|t}$.

Define a tree-valued process (T_t , $t \ge 0$):

• $T_0 = root$.

Set $\xi_1 < \xi_2 < \cdots < \xi_n < \cdots$ the atoms of a Poisson point measure on \mathbb{R}_+ with intensity $\frac{1}{2} \alpha e^{|\theta|t}$.

Define a tree-valued process ($\mathcal{T}_t, t \ge 0$):

- $T_0 = root$.
- All the branches grow at unit speed $\Longrightarrow H(\mathcal{T}_t) = t$. For $0 \le t < \xi_1$, $\mathcal{T}_t = [0, t]$.

イロン イボン イヨン イヨン 三日

Set $\xi_1 < \xi_2 < \cdots < \xi_n < \cdots$ the atoms of a Poisson point measure on \mathbb{R}_+ with intensity $\frac{1}{2} \alpha e^{|\theta|t}$.

Define a tree-valued process ($\mathcal{T}_t, t \ge 0$):

- $T_0 = root$.
- All the branches grow at unit speed $\Longrightarrow H(\mathcal{T}_t) = t$. For $0 \le t < \xi_1, \ \mathcal{T}_t = [0, t]$.
- At time ξ_1 , a branching occurs, a second branch appears.

イロン イボン イヨン イヨン 三日

Set $\xi_1 < \xi_2 < \cdots < \xi_n < \cdots$ the atoms of a Poisson point measure on \mathbb{R}_+ with intensity $\frac{1}{2}\alpha e^{|\theta|t}$.

Define a tree-valued process ($T_t, t \ge 0$):

- $\mathcal{T}_0 = root$.
- All the branches grow at unit speed $\Longrightarrow H(\mathcal{T}_t) = t$. For $0 \le t \le \xi_1$, $T_t = [0, t]$.
- At time ξ_1 , a branching occurs, a second branch appears.
- Recursively, at time ξ_n , T_{ξ_n} has *n* leaves. Pick a leaf uniformly at random. A binary branching occurs on that leaf.

Set $\xi_1 < \xi_2 < \cdots < \xi_n < \cdots$ the atoms of a Poisson point measure on \mathbb{R}_+ with intensity $\frac{1}{2}\alpha e^{|\theta|t}$.

Define a tree-valued process ($T_t, t \ge 0$):

- $\mathcal{T}_0 = root$.
- All the branches grow at unit speed $\Longrightarrow H(\mathcal{T}_t) = t$. For $0 \le t \le \xi_1$, $T_t = [0, t]$.
- At time ξ_1 , a branching occurs, a second branch appears.
- Recursively, at time ξ_n , T_{ξ_n} has *n* leaves. Pick a leaf uniformly at random. A binary branching occurs on that leaf.

Set $\mathcal{T}^{ske} = \lim_{t \to +\infty} \mathcal{T}_t$.

Angers 2023
The tree $T^{\alpha,|\theta|}$

- $\Lambda(dx)$: length measure on \mathcal{T}^{ske} .
- $(x_i, \mathcal{T}_i)_{i \in I}$ atoms of a Poisson-point measure on $\mathcal{T}^{ske} \times \mathbb{T}$ with intensity

 $\Lambda(dx)\mathbb{N}^{|\theta|}[d\mathcal{T}].$

• $\mathcal{T}^{\alpha,|\theta|} = \mathcal{T}^{ske} \circledast_{i \in I} (x_i, \mathcal{T}_i).$

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Thank you for your attention.

イロト イポト イヨト イヨト

æ