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1. Motivation

m Many biological populations exhibit non-exponential growth :
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m Which model of branching process is the most appropriate for
populations with logistic growth and a carrying capacity ?

m Is the population size internally controlled (demographic
stochasticity) or externally controlled (environmental stochasticity) ?
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Two relevant classes of branching processes

The following two models see active use in modelling biological
populations :

m A population-size-dependent branching process (PSDBP),
{Zn}nen,. has recurrence relation

m A controlled branching process (CBP), {Z, }nen,, has recurrence

relation o
- ¢(Zn71) _
Zn = Z fn,ia n>1
i=1

where ¢(-) is a (possibly random) control function.



Linking Population-Size-Dependent and Controlled Branching Processes

L Motivation

Both PSDBPs and CBPs can model logistic growth

m Useful to model populations that linger around a carrying capacity in
habitats that exhibit resource scarcity.

m Trajectories of a PSDBP with £(z) 2 Bin(2, Kz/(K + z)), and a CBP
with ¢(z) £ Bin(z + 2,2K2/(3(K + 2)(z + K))) and € < Poi(3), for
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Comparing PSDBPs and CBPs

Population-size-dependent branching processes :

m Have flexibility in allowing the offspring distribution to vary in the
current population size

m Have no built-in mechanism to model external random environment

Controlled branching processes :

m Do not have flexibility in allowing the offspring distribution to vary
in the current population size

m Can model external conditions (random environment, migration,. . .)



Linking Population-Size-Dependent and Controlled Branching Processes

L Motivation

Controlled Branching Processes

The entire class of CBPs is too flexible for statistical purposes.

Lemma 1

Any time-homogeneous Markov chain {X,,} on IN can be expressed as a
CBP.

Indeed, let ¢(2) 4 (Xp|Xpn_1=2)and let € =1 ass.

The class of control functions is often restricted, popular choices being :

m (2) ~ Poi(y(2)), for ¢: Ng— R*, or
m §(z) ~ NB(¥(2),q), for q€[0,1] and ¢ : Ny — RT, or
m ¢(z2) ~ Bin(4(z),p), for pe[0,1] and v : Ny — Ny,

See for example the book “Controlled Branching Processes” by Miguel
Gonzélez Velasco, Inés M. del Puerto Garcia, and George P. Yanev, page 129.
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Which model to use?

m When is it appropriate to model a population using a PSDBP ?
m When should we use a CBP instead ?
m When does a PSDBP have an equivalent representation as a CBP ?

m When are PSDBPs and CBPs approximately equivalent ?
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2. PSDBP-CBP equivalence

m A PSDBP {Z,},>0 and a CBP {Zn}nZO with initial population size
Zoy = Zy = zg > 1 are equivalent if

(Zn\Znr = 2) £ (Zo| Zny = 2)
forallm>1and z > 0.
m Recall that
z o é(2) ~
(Zn|Zn—1 = Z) = an,z(z)a (anzn—l = ) = Zgn,z
i=1 i=1

Lemma 2 (All PSDBPs are CBPs)
Every PSDBP can be expressed as a CBP.

11
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m No CBP which allows immigration at zero can be expressed as a
PSDBP.

m We now describe a class of CBPs which have an equivalent PSDBP.

Definition 1

A random variable X is said to be n-divisible if there exists a sequence of
i.i.d. random variables {X™},<,, such that X £ 3" X" We say
that X is infinitely divisible if X is n-divisible for all integers n > 1.

m Examples : Poisson, geometric, negative binomial r.v.’s are infinitely
divisible ; a binomial r.v. is divisible but not infinitely divisible.

m We introduce another notion of divisibility, defined for processes
rather than random variables :

Definition 2
A CBP {Z,} is said to have a Z-divisible control function ¢ if $(0) =0
and ¢(z) is z-divisible for all z > 1.

12
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Theorem 1 (CBPs with Z-divisible ¢ have equivalent PSDBPs)

Let {Z,} be a CBP with a Z-divisible control function ¢. Then {Z,} can
be expressed as a PSDBP.

Proof : For all attainable z > 1, we can write ¢(z) = 25:1 ¢;(2), for
some i.i.d random variables (;(z). Then,

~(2:) z ¢ (2) z
gn,i = Z Z gﬂ/,i = Zf%j(z)'
1=1 Jj=1 1=1 Jj=1

Corollary 1

If a CBP {Z,} has a control function such that $(0) = 0 and
m ¢(2) ~ Poi(¢(2)), for ¢ : Ng — R™T, or
m ¢(z) ~ NB(¥(2),q), for ¢ €[0,1] and : Ny — RT, or
m ¢(z) ~ Bin(k - z,p), for pe[0,1] and k € N,

then {Z,,} can be expressed as a PDSBP.

13
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m Is Z-divisibility of é an ‘if and only if’ condition ?

That is, is the Z—divisibility of the control function characterising the
PSDBP-CBP equivalence ?

m In particular, in the binomial control case ¢(z) ~ Bin(1(z), p), is the
restriction 1 (z) = k - z necessary for equivalence ?

m We explore the general case ¢(z) ~ Bin(1(z), p) with two different
infinite divisible offspring distributions : Poisson and geometric.

14
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Binomial control and Poisson offspring

m The following result suggests that Z-divisibility of ¢ might be a
necessary and sufficient condition :

Proposition 1
Consider a CBP {Z,,} with

P(z) ~ Bin(v(z),p(z)) and £ ~ Poi()\), z >0,

where v : Ng — Ny is deterministic, and p : Nog — (0,1), and A > 0.

If (z) is not Z-divisible, and v(z) > 1 for all z > 1, then {Z,} cannot
be expressed equivalently as a PSDBP.

Idea of the proof : Show that for a 2* s.t. that $(2*) is not z*-divisible,
(Zn|Zn—1 = 2*) is not z*-divisible, i.e., *\/G(t) is not a valid pgf, where
G(t) = (p(=) + (1 = p(z))eX )"

15
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Binomial control and geometric offspring

m Changing the offspring distribution leads to a contrasting result :

Proposition 2
Consider a CBP {Z,,} with
#(2) ~ Bin(v(2),p(z)) and &~ Geom(q),
for z € Ny, deterministic functions v : Ng — Ny, p: Ng — (0,1), and
q € (0,1).
Then as long as v(0) = 0, {Z,} can be expressed equivalently as a
PSDBP.
m We believe the tail of the offspring distribution € impacts the overall
divisibility of (Zp|Zp_1 = z).

m Open Question : What are necessary and sufficient conditions for
PSDBP-CBP equivalence ?

16
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3. PSDBP-DCBP equivalence

Definition 3

A deterministically-controlled branching process (DCBP) {Z,,} is a CBP
with a deterministic control function ¢(-).

m For a PSDBP and a DCBP to be equivalent, we require that

z #(z)
(ZnlZn1=2)= &ni(2),  (ZulZn1=2)=)_ &n-
=1 i=1

share the same distribution for all n > 1 and all z > 0.

m Neither the set of PSDBPs nor the set of DCBPs encompasses the
other, but a DCBP has an equivalent representation as a PSDBP
when it has a Z-divisible control function.

18
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m There exists an equivalent PSDBP to a DCBP if and only if £ is
divisible by all the prime factors of z that ¢(z) is not, for all z > 0.

Definition 4
We say that a DCBP {Z,} is Z-divisible if $(0) = 0 and, for all values

z .
Yy < yZ = {gcd[d)w Lz # 0 attalnable},

& is y-divisible.
Theorem 2 (NSC for PSDBP-DCBP equivalence)

A DCBP {Z,} can be expressed as a PSDBP if and only if {Z,} is
Z-divisible.

19
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4. Approximate equivalence when moments are matching

m Question : Do non-equivalent PSDBPs and DCBPs, with the same
mean and variance, become ‘close’ in distribution if the initial
population size is large 7
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m 37 &ni(z) and 2% £, are just sums of i.i.d. random variables

— we may expect a central limit theorem-like result to hold.
21
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Total variation distance

m The total variation distance (TVD) measures the ‘closeness’ between
two probability distributions, or two random processes :
Definition 1

For random variables X and Y defined on a countable space X, the TVD
between each of their distributions is defined as

ILx — Ly|lrv = sup [P(X € A) — P(Y € A)|.
ACX

Interpretation : Hj : data generated from X ; H; : generated from Y.
Type l-error : reject Hy if actually true; Type ll-error : fail to reject Hy if
actually false.

P(Type l-error) + P(Type ll-error) > 1 — ||Lx — Ly ||rv

So if TVD approaches 0, it is impossible to detect from which

distribution the data come from.
22
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A one-step upper bound on the TVD

Lemma 2

For a PSDBP {Z,} and a DCBP {Z,,}, with matching mean and
variance and satisfying certain conditions, there exists b € R such that,
for any z > 1,

b
||£Z1\ZDZZ - ‘C’Zl|20:z||TV < %

Idea of the proof : We use the triangle inequality to bound the overall
TVD as the sum of TVDs between each one-step distribution and the
discretised normal distribution.

23
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A k-step upper bound on the TVD

Theorem 3
Under the same conditions as in Lemma 2, and for any z, k > 1,

=77 et -y

@
IL(zy,...20)120=2—L(2,,..., 2,)1 Zo== 1TV < 7 . ;

where vy is a criticality parameter that is > 1 if the processes grow on
average, and < 1 if they shrink on average, and c1(7),c2(7y) € RT.

m In the proof, we used an inductive argument to find explicit
expressions for the constants in the upper bound.

® When v > 1, in the limit as z increases to infinity the CBP and the
PSDBP are indistinguishable over their entire paths.

24



Linking Population-Size-Dependent and Controlled Branching Processes

L Approximate equivalence when moments are matching

Necessary and sufficient conditions for moment matching

m Let m(z) and o%(2) be the offspring mean and variance of a PSDBP
m Let 7 and &2 the offspring mean and variance of a DCBP

m A PSDBP and a DCBP have matching mean and variance if

z-m(z) =m-¢(z) and z-0%(2) =% ¢(2) for all z € INy.

Theorem 3 (NSC to match a PSDBP to a DCBP)

A PSDBP {Z,} can be found to match the mean and variance of a
DCBP {Z,} if and only if {Z,} satisfies

72 - 9(2) > d(2)(1 —d(2)), for all z € Ny,

25
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Theorem 4 (NSC to match a DCBP to a PSDBP)

A DCBP {Z,} can be found to match the mean and variance of a
PSDBP {Z,,} if and only if the following requirements on {Z,,} hold for
all z € Ny such that m(z) #0 :

(i) there exists a constant k € R such that m(z) =k - 0%(2),

(i) there exists a (necessarily non-unique) constant h € R™ such that
m(z) € h-Ny,

(iii) For H :={h € Rso:m(z) € h-N; Vz € Ny}, there exists
B > sup,.,{h € H} such that % > (W = [A])Q-n+|F)).

26
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A k-step upper bound on the TVD : Extensions

m Moments do not need to match exactly ! Our results extend to the
case where the absolute difference of the means goes to 0 and the
relative difference of the variance goes to 0.

m We can generalise our results to find the upper bound on the TVD
between a PSDBP and a hybrid DCBP-PSDBP :

$(Zn—1)

= Z €nz nl n > 1.

under additional assumption on &(z).

This includes in particular, the binomial control case.

27
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5. Numerical illustrations

m Coming back to our motivation : we are interested in populations
exhibiting logistic growth with a carrying capacity.
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m We have seen in our theoretical bound that the TVD between
PSDBP and CBP paths decreases in 1/1/z.

We introduce a practical example which goes slightly beyond the
setting of the theorem but which exhibits similar decaying behaviour.
29
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A Beverton-Holt model with immigration

For A>2, M,K € Ny, M < K, consider the CBP {Zn}nelNo with

2K2

P=) ~ein (“ R S A oy v TS}

) and € ~ Poi (X),

and the PSDBP {Z,,},en, with

(o) ~ NE 2K2(z + M) (2 + K)(K + M)
ZNK + M)z + AKM + (A — 2)K2) (1 + M\ (K 4+ M)(K + 2z) — 2K2

Both processes have matching moments, and a carrying capacity at K.

- 2
Lettmg v(z) = (2 + M)1{2>0}and ¢(z) ~ ZIP (1 - W ,\),

1
—~

z)~

(Zn‘anl = Z) = i = Cl(z)a
1 1

<
—~

183
-

W
.
Il

where v(z) is a deterministic function (hybrid DCBP-PSDBP).
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Estimation of the TVD

m While the analytical bound on the TVD provides decay rates on the
TVD in terms of the initial population size, this bound is not tight.

m To estimate the TVD between any PDSBP and CBP, we can use
Monte-Carlo simulation and importance sampling :
Lemma 4 (An estimator for the TVD)

Let X and Y be two random variables defined on a countable space X.
Forn >1, let X1,...,X,, be a random sample from the distribution of
X, Lx. Then

x (X5)

is an unbiased, consistent estimator for ||Lx — Ly ||7v -

s 1 [Lx (X)) — Ly (X))
On = 2n ZZ; L
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Estimation of the TVD

Proof :

Iex — Lyllry = 5 37 [P(X =n) ~ P(Y =)

neXx
1 IP(X =n)—P(Y =n)| B
_57;( P(X = n) P =n)
_1 ILx(X) — Ly (X))
Q.EX< - ﬁx(X)Y )
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Estimated TVD in our practical example

Estimated TVD over different K, for zo=K and different path lengths
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Estimated TVD between the processes {Z, }nen, and {Z, }nen, when
A =3 and M = 2 based on 10° simulations.
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Estimated TVD in our practical example

Estimated TVD over different K, for zo=1 and different path lengths
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Estimated TVD between the processes {Z, }nen, and {Z, }nen, when
A =3 and M = 2 based on 10° simulations.
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6. Conclusions

m PSDBPS cannot incorporate external random factors.

m We have seen that many CBP models, including those with Poisson,
negative binomial, and binomial control functions, can be expressed
as PSDBPs, whether exactly, or approximately.

m Therefore, when we use these common control functions, we are not
getting anything additional than if using PSDBPs.

m So which class of models should we look at ? How should we
estimate their parameters ? Which parameters can be estimated
consistently ? This is ongoing work.

Thank you for your attention !
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