Support properties for SPDE models for spatial branching processes with interaction

Thomas Hughes, McGill University

Branching Processes and Applications - Angers, France

May 23, 2023

Continuous state branching

Let ψ be the Laplace exponent of a spectrally positive Lévy process:

$$\psi(\lambda) = a\lambda + \frac{\sigma^2}{2}\lambda^2 + \int_{(0,\infty)} \left(\exp^{-\lambda r} - 1 + \lambda r\right) \nu(dr),$$

where $a \in \mathbb{R}$, $\sigma \ge 0$, $\int (r \wedge r^2) \nu(dr) < \infty$.

The ψ -continuous state branching process (CSBP) is the \mathbb{R}_+ -valued Markov process $(Z_t)_{t\geq 0}$ with Laplace functional

$$\mathbb{E}_a^Z(e^{-\lambda Z_t})=e^{-au_\lambda(t)},$$

where $u_{\lambda}(t)$ solves the evolution equation

$$\dot{u}_{\lambda}(t) = -\psi(u_{\lambda}(t)), \quad u_{\lambda}(0) = \lambda.$$

Super-Brownian motion

A ψ -super-Brownian motion is the $\mathcal{M}_f(\mathbb{R}^d)$ (measure)-valued process $(X_t)_{t\geq 0}$ with Laplace functional

$$\mathbb{E}_{X_0}^X(e^{-\langle X_t,\phi
angle})=e^{-\langle X_0,v_\phi(t,\cdot)
angle},$$

where $v_{\phi}(t)$ satisfies the PDE

$$\dot{v}_{\phi}(t,x)=rac{1}{2}\Delta v_{\phi}(t,x)-\psi(v_{\phi}(t,x)), \quad v_{\phi}(0,x)=\phi(x).$$

Super-Brownian motion

A ψ -super-Brownian motion is the $\mathcal{M}_f(\mathbb{R}^d)$ (measure)-valued process $(X_t)_{t\geq 0}$ with Laplace functional

$$\mathbb{E}_{X_0}^X(e^{-\langle X_t,\phi
angle})=e^{-\langle X_0,v_\phi(t,\cdot)
angle},$$

where $v_{\phi}(t)$ satisfies the PDE

$$\dot{v}_{\phi}(t,x)=rac{1}{2}\Delta v_{\phi}(t,x)-\psi(v_{\phi}(t,x)), \quad v_{\phi}(0,x)=\phi(x).$$

The cases $\psi(u) = u^2$ and $\psi(u) = u^{\alpha}$, $\alpha \in (0, 2)$, correspond respectively to binary and α -stable branching.

(If $\alpha \in (1,2)$, we typically write $\alpha = 1 + \beta$, $\beta \in (0,1)$.)

The compact support property

Fact: for $\psi(u) = u^2$ and $\psi(u) = u^{\alpha}$, $\alpha \in (1, 2)$, the ψ -super-Brownian motion X_t satisfies the **compact support property**:

If X_0 has compact support,

 $\bigcup_{s\in[0,t]} \operatorname{supp}(X_s) \text{ is compact for all } t>0 \text{ a.s.}$

Lamperti transform: the $\psi\text{-}\mathsf{CSBP}$ is the Lévy process with characteristic exponent ψ time-changed to run at speed equal to its size.

Suppose that ψ is the branching mechanism of a pure jump CSBP with Lévy measure ν . Let N(dr, dz, ds) be a compensated Poisson random measure with intensity $\nu(dr)dzds$. We may then write

$$Z_t-Z_0=\int_0^t\int_0^{Z_{s-}}\int_0^\infty rN(dr,dz,ds).$$

Lamperti transform: the $\psi\text{-}\mathsf{CSBP}$ is the Lévy process with characteristic exponent ψ time-changed to run at speed equal to its size.

Suppose that ψ is the branching mechanism of a pure jump CSBP with Lévy measure ν . Let N(dr, dz, ds) be a compensated Poisson random measure with intensity $\nu(dr)dzds$. We may then write

$$Z_t-Z_0=\int_0^t\int_0^{Z_{s-}}\int_0^\infty rN(dr,dz,ds).$$

CSBP and SDE

If $\psi(u) = u^{\alpha}$, then $\nu(dr) = c_{\alpha}r^{-1-\alpha}$, and a scaling calculation shows that the following processes are equal in law:

$$\int_0^t \int_0^{Z_{s-}} \int_0^\infty r \, N(dr, dz, ds) \quad \text{and} \quad \int_0^t \int_0^1 \int_0^\infty (Z_{s-}^{1/\alpha} r) \, N(dr, dz, ds).$$

In particular, Z_t satisfies the jump SDE

$$dZ_t = Z_{t-}^{1/\alpha} dW_t,$$

where W_t is a spectrally positive α -stable process.

CSBP and SDE

If $\psi(u) = u^{\alpha}$, then $\nu(dr) = c_{\alpha}r^{-1-\alpha}$, and a scaling calculation shows that the following processes are equal in law:

$$\int_0^t \int_0^{Z_{s-}} \int_0^\infty r \, N(dr, dz, ds) \quad \text{and} \quad \int_0^t \int_0^1 \int_0^\infty (Z_{s-}^{1/\alpha} r) \, N(dr, dz, ds).$$

In particular, Z_t satisfies the jump SDE

$$dZ_t = Z_{t-}^{1/\alpha} dW_t,$$

where W_t is a spectrally positive α -stable process.

The CSBP associated to $\psi(u) = u^2$ is Feller's branching diffusion

$$dZ_t = Z_t^{1/2} dB_t.$$

Super-Brownian motion and SPDE

Similarly, for $\psi(u) = u^2$, the density of ψ -super-Brownian motion in d = 1 satisfies

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{1/2} \dot{\xi}_2(t,x), \quad t>0, \, x\in\mathbb{R}.$$

where $\dot{\xi}_2$ is space-time white Gaussian noise.

Super-Brownian motion and SPDE

Similarly, for $\psi(u) = u^2$, the density of ψ -super-Brownian motion in d = 1 satisfies

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{1/2} \dot{\xi}_2(t,x), \quad t>0, \, x\in\mathbb{R}.$$

where $\dot{\xi}_2$ is space-time white Gaussian noise.

For $\psi(u)=u^{\alpha},$ the density of $\psi\text{-super-Brownian}$ motion for $d<\frac{2}{\alpha-1}$ satisfies

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{1/lpha} \dot{\xi}_{lpha}(t,x), \quad t>0, \, x\in \mathbb{R}^d.$$

where $\dot{\xi}_{\alpha}$ is space-time white (spectrally positive) α -stable noise.

State-dependent branch rates

In a *non-linear CSBP*, the branch rate is a function of the total population size: for some increasing $R : \mathbb{R}_+ \to \mathbb{R}_+$,

$$Z_t-Z_0=\int_0^t\int_0^{R(Z_{s-1})}\int_0^\infty rN(dr,dz,ds).$$

State-dependent branch rates

In a *non-linear CSBP*, the branch rate is a function of the total population size: for some increasing $R : \mathbb{R}_+ \to \mathbb{R}_+$,

$$Z_t-Z_0=\int_0^t\int_0^{R(Z_{s-1})}\int_0^\infty rN(dr,dz,ds).$$

In the Brownian and stable cases, we respectively have

$$dZ_t = R(Z_t)^{1/2} dB_t$$

and

$$dZ_t = R(Z_{t-})^{1/lpha} dW_t.$$

Let $\gamma > 0$, $\alpha \in (1, 2]$, and $d < \frac{2}{\alpha - 1}$.

Let $\gamma > 0$, $\alpha \in (1, 2]$, and $d < \frac{2}{\alpha - 1}$. We may view a non-negative solution to the SPDE

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^\gamma \dot{\xi}_lpha(t,x), \quad t>0, \, x\in \mathbb{R}^d$$

as a super-Brownian motion with *density dependent branch rate*, or *spatial* non-linear CSBP.

Let $\gamma > 0$, $\alpha \in (1, 2]$, and $d < \frac{2}{\alpha - 1}$. We may view a non-negative solution to the SPDE

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^\gamma \dot{\xi}_lpha(t,x), \quad t>0, \, x\in \mathbb{R}^d$$

as a super-Brownian motion with *density dependent branch rate*, or *spatial* non-linear CSBP.

Decompose noise term as

$$X(t,x)^{\gamma}\dot{\xi}(t,x) = X(t,x)^{\gamma-\frac{1}{\alpha}}$$

variable branch rate

 $\times \underbrace{X(t,x)^{\frac{1}{\alpha}}\dot{\xi}(t,x)}_{X(t,x)}$

 α -stable branching

Let $\gamma > 0$, $\alpha \in (1, 2]$, and $d < \frac{2}{\alpha - 1}$. We may view a non-negative solution to the SPDE

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^\gamma \dot{\xi}_lpha(t,x), \quad t>0, \, x\in \mathbb{R}^d$$

as a super-Brownian motion with *density dependent branch rate*, or *spatial* non-linear CSBP.

Decompose noise term as

$$X(t,x)^{\gamma} \dot{\xi}(t,x) = \underbrace{X(t,x)^{\gamma-\frac{1}{\alpha}}}_{\text{variable branch rate}} \times \underbrace{X(t,x)^{\frac{1}{\alpha}} \dot{\xi}(t,x)}_{\alpha-\text{stable branching}}$$

For what values of γ does $X(t, \cdot)$ have compact support?

Compact support - Gaussian noise.

Let $\alpha = 2$. (Gaussian noise; d = 1.) Consider a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^\gamma \dot{\xi}_2(t,x), \quad t>0, \, x\in\mathbb{R}.$$

Compact support - Gaussian noise.

Let $\alpha = 2$. (Gaussian noise; d = 1.) Consider a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{\gamma} \dot{\xi}_2(t,x), \quad t > 0, \, x \in \mathbb{R}.$$

Theorem (Shiga 1994; Mueller & Perkins, 1992; Krylov, 1997)

• If $\gamma < 1$, X has the compact support property.

Compact support - Gaussian noise.

Let $\alpha = 2$. (Gaussian noise; d = 1.) Consider a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^\gamma \dot{\xi}_2(t,x), \quad t>0, \, x\in\mathbb{R}.$$

Theorem (Shiga 1994; Mueller & Perkins, 1992; Krylov, 1997)

• If $\gamma < 1$, X has the compact support property.

Theorem (Mueller, 1990)

• If
$$\gamma \ge 1$$
, $X(t,x) > 0$ for all $t > 0$, $x \in \mathbb{R}$.

Compact support - stable noise (main result)

Let $\alpha \in (1,2)$. (α -stable noise; $d < \frac{2}{\alpha-1}$.) Consider a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{\gamma} \dot{\xi}_{\alpha}(t,x), \quad t > 0, \, x \in \mathbb{R}^d.$$

Compact support - stable noise (main result)

Let $\alpha \in (1,2)$. (α -stable noise; $d < \frac{2}{\alpha-1}$.) Consider a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{\gamma} \dot{\xi}_{\alpha}(t,x), \quad t > 0, \, x \in \mathbb{R}^d.$$

Theorem (H. 2022+)

- (d = 1) If 2 α < γ < 1, X has the compact support property.
- (d > 1) If $1/\alpha \leq \gamma <$ 1, X has the compact support property.

The proof uses the method of Krylov.

First let d = 1. Suppose supp $(X_0) \subset (-R, R)$. Mass moves continuously by diffusion, so if $X_t([R, \infty)) > 0$, we must have $A_t(R) > 0$, where

$$A_t(x) = \int_0^t X(s, x) ds.$$

 \Rightarrow It suffices to show that $A_t(x) = 0$ for some $x < \infty$.

The proof uses the method of Krylov.

First let d = 1. Suppose supp $(X_0) \subset (-R, R)$. Mass moves continuously by diffusion, so if $X_t([R, \infty)) > 0$, we must have $A_t(R) > 0$, where

$$A_t(x) = \int_0^t X(s, x) ds.$$

 \Rightarrow It suffices to show that $A_t(x) = 0$ for some $x < \infty$.

Integration by parts gives

$$\int_x^\infty (y-x)Y_t(y)dy = A_t(x) + \int_{(0,t]\times\mathbb{R}} (y-x)_+ Y_s(y)^\gamma \xi(ds,dy).$$

Use the IBP formula to obtain estimates of the following form: for $x_1 \approx x_0 + r$,

 $\mathbb{P}(A_t(x_1) \ge a) \le \mathbb{P}(A_t(x_0) \ge b) + Error(a, b, t, r).$

Use the IBP formula to obtain estimates of the following form: for $x_1 \approx x_0 + r$,

$$\mathbb{P}(A_t(x_1) \ge a) \le \mathbb{P}(A_t(x_0) \ge b) + Error(a, b, t, r).$$

Iterating this estimate for a good choice of parameters, one obtains, for some L > 0,

$$\mathbb{P}(A_t(x+L)>0) \leq \mathbb{P}(A_t(x)>\epsilon) + O(\epsilon).$$

Taking $x \to \infty$ and $\epsilon \to 0$, conclude that

$$\lim_{x\to\infty}\mathbb{P}(A_t(x)>0)=0.$$

Elements of the proof; other remarks

For d > 1: the occupation density $A_t(x)$ is replaced with the occupation density along a (d - 1)-dimensional hyperplane or sphere. Some complexities arise.

Elements of the proof; other remarks

For d > 1: the occupation density $A_t(x)$ is replaced with the occupation density along a (d - 1)-dimensional hyperplane or sphere. Some complexities arise.

It is supposed to be easy for small γ - what goes wrong?

Concerning blow-up, consider the following theorem: let X be a non-negative solution to

$$\partial_t X(t,x) = rac{1}{2} \Delta X(t,x) + X(t,x)^{\gamma} \dot{\xi}_2(t,x), \quad t > 0, \, x \in \mathbb{R}.$$

Theorem (Mueller, 2000) If $\gamma > 3/2$, $||X_t||_{\infty} \to \infty$ in finite time a.s. Thank you!