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Continuous state branching

Let v be the Laplace exponent of a spectrally positive Lévy
process:

P(A) = ar+ 0—2)\2 + (ex A1 )
= P + Ar ) v(dr),
2 (0.00)

where a€ R, 0 >0, [(r A r?)y(dr) < oc.

The 1-continuous state branching process (CSBP) is the
R -valued Markov process (Z;):>0 with Laplace functional

EaZ(e—)\Zt) — e—au/\(t)’

where u)(t) solves the evolution equation

an(t) = —(ur(t)), ur(0) =\



Super-Brownian motion

A tp-super-Brownian motion is the M¢(R?) (measure)-valued
process (X;)¢>0 with Laplace functional

}E§O(e_<xh¢>) — e_<X07V¢(t7')>

)

where vy4(t) satisfies the PDE

b (3) = 2 Bvg(t ) — (vg(t, ), vo(0,x) = 6(0).



Super-Brownian motion

A tp-super-Brownian motion is the M¢(R?) (measure)-valued
process (X;)¢>0 with Laplace functional

}E§O(e_<xh¢>) — e_<X07V¢(t7')>

)

where vy4(t) satisfies the PDE

b (3) = 2 Bvg(t ) — (vg(t, ), vo(0,x) = 6(0).

The cases 9(u) = u? and ¥(u) = u®, o € (0,2), correspond
respectively to binary and a-stable branching.

(If a € (1,2), we typically write « =1+ 3, 5 € (0,1).)



The compact support property

Fact: for ¢(u) = u? and ¥(u) = u®, a € (1,2), the
1p-super-Brownian motion X; satisfies the compact support
property:

If Xo has compact support,

U supp(Xs) is compact for all t > 0 a.s.
s€[0,t]



CSBP and SDE

Lamperti transform: the 1)-CSBP is the Lévy process with
characteristic exponent v time-changed to run at speed equal to
its size.

Suppose that 1 is the branching mechanism of a pure jump CSBP
with Lévy measure v. Let N(dr, dz, ds) be a compensated Poisson
random measure with intensity v(dr)dzds. We may then write

t Zs_ o)
Zi — Zp = / / / rN(dr, dz, ds).
o Jo 0
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CSBP and SDE

If ¥(u) = u®, then v(dr) = c,r~1~, and a scaling calculation
shows that the following processes are equal in law:

//Z/ N(dr, dz,ds) and /// ZY° ) N(dr, dz, ds).

In particular, Z; satisfies the jump SDE
dz, = ZY*dw,,

where W; is a spectrally positive a-stable process.



CSBP and SDE

If ¥(u) = u®, then v(dr) = c,r~1~, and a scaling calculation
shows that the following processes are equal in law:

//Z/ N(dr, dz,ds) and /// ZY° ) N(dr, dz, ds).

In particular, Z; satisfies the jump SDE

l/a

dz, = ZX*aw,,

where W; is a spectrally positive a-stable process.

The CSBP associated to 1(u) = u? is Feller's branching diffusion

1/2

dZ; = dB:;.



Super-Brownian motion and SPDE

Similarly, for v(u) = u?, the density of 1/-super-Brownian motion
in d = 1 satisfies

O X(t,x) = %AX(t,x) + X(t,x)Y%65(t,x), t>0,x€eR.

where & is space-time white Gaussian noise.



Super-Brownian motion and SPDE

Similarly, for v(u) = u?, the density of 1/-super-Brownian motion
in d = 1 satisfies

1 .
OeX(t,x) = SOX(t,x) + X(t,x)Y265(t,x), t>0,xeR.
where éz is space-time white Gaussian noise.

For ¢(u) = u®, the density of 1-super-Brownian motion for
d < % satisfies

1 .
eX(t,x) = S AX(t.x) + X(t,x),(t,x), t>0, xeRq.

where Sa is space-time white (spectrally positive) a-stable noise.



State-dependent branch rates

In a non-linear CSBP, the branch rate is a function of the total
population size: for some increasing R : Ry — R,

R(Zs-)
Zy — Zo—/ / / N(dr, dz, ds).



State-dependent branch rates

In a non-linear CSBP, the branch rate is a function of the total
population size: for some increasing R : Ry — R,

R(Zs-)
Zy — Zo—/ / / N(dr, dz, ds).

In the Brownian and stable cases, we respectively have
dZ, = R(Z;)*?dB;

and
dZ; = R(Z;_)Y*dw,.



Density-dependent branch rates

2
Let v >0, o € (1,2], and d < —=5.



Density-dependent branch rates

Let v >0, e (1,2],and d < % We may view a non-negative
solution to the SPDE

1 .
0eX(t,x) = SAX(t,x) + X(£,x)76(t,x), t>0,x€ RY

as a super-Brownian motion with density dependent branch rate,
or spatial non-linear CSBP.
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variable branch rate a-stable branching



Density-dependent branch rates

Let v >0, e (1,2],and d < % We may view a non-negative
solution to the SPDE

1 .
0eX(t,x) = SAX(t,x) + X(£,x)76(t,x), t>0,x€ RY

as a super-Brownian motion with density dependent branch rate,
or spatial non-linear CSBP.

Decompose noise term as

X(t,x)€(t,x) = X(t.x)"a  x X(t,x)oE(tx)
—_————
variable branch rate a-stable branching

For what values of v does X(t,-) have compact support?



Compact support - Gaussian noise.

Let &« = 2. (Gaussian noise; d = 1.) Consider a non-negative
solution to

1 .
O X(t, x) = 5AX(t,x) + X(t,x)7&(t,x), t>0,xeR.
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Compact support - Gaussian noise.

Let &« = 2. (Gaussian noise; d = 1.) Consider a non-negative
solution to

1 .
O X(t, x) = 5AX(t,x) + X(t,x)7&(t,x), t>0,xeR.

Theorem (Shiga 1994; Mueller & Perkins, 1992; Krylov, 1997)

o Ify <1, X has the compact support property.

Theorem (Mueller, 1990)
o Ify>1, X(t,x) >0 forallt >0, x €R.



Compact support - stable noise (main result)

Let a € (1,2). (a-stable noise; d < —2:.) Consider a non-negative
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Compact support - stable noise (main result)

Let a € (1,2). (a-stable noise; d < —2:.) Consider a non-negative
solution to

1 .
0eX(t,x) = SAX(t,x) + X(t,x)6(t,x), t>0,x€ RY.

Theorem (H. 2022+)

o (d=1)If2—a <~vy<1, X has the compact support
property.
o (d>1)If1/a <~ <1, X has the compact support property.



Elements of the proof

The proof uses the method of Krylov.

First let d = 1. Suppose supp(Xo) C (—R, R). Mass moves
continuously by diffusion, so if X¢([R,o0)) > 0, we must have
At(R) > 0, where

Ai(x) = /Ot X(s,x)ds.

= It suffices to show that As(x) = 0 for some x < oc.
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The proof uses the method of Krylov.

First let d = 1. Suppose supp(Xo) C (—R, R). Mass moves
continuously by diffusion, so if X¢([R,o0)) > 0, we must have
At(R) > 0, where

Ai(x) = /Ot X(s,x)ds.

= It suffices to show that As(x) = 0 for some x < oc.

Integration by parts gives

[ o=%idy = A+ [ (= xs Vel )

(0,t] xR



Elements of the proof

Use the IBP formula to obtain estimates of the following form: for
X1~ Xp+r,

P(At(x1) > a) < P(A¢(x0) > b) + Error(a, b, t,r).



Elements of the proof

Use the IBP formula to obtain estimates of the following form: for
X1~ X+ r,

P(At(x1) > a) < P(A¢(x0) > b) + Error(a, b, t,r).

Iterating this estimate for a good choice of parameters, one
obtains, for some L > 0,

P(A¢(x + L) > 0) < P(A¢(x) > €) + O(e).

Taking x — oo and € — 0, conclude that

lim P(A.(x) > 0) = 0.

X—00



Elements of the proof; other remarks

For d > 1: the occupation density A¢(x) is replaced with the
occupation density along a (d — 1)-dimensional hyperplane or
sphere. Some complexities arise.



Elements of the proof; other remarks

For d > 1: the occupation density A¢(x) is replaced with the
occupation density along a (d — 1)-dimensional hyperplane or
sphere. Some complexities arise.

It is supposed to be easy for small v - what goes wrong?



A result on explosions

Concerning blow-up, consider the following theorem: let X be a
non-negative solution to

1 .
0 X(t,x) = EAX(t,X) + X(t,x)7&(t,x), t>0,xeR.

Theorem (Mueller, 2000)
If v >3/2, || Xt||oo — o0 in finite time a.s.



Thank you!



