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Continuous state branching

Let ψ be the Laplace exponent of a spectrally positive Lévy
process:

ψ(λ) = aλ+
σ2

2
λ2 +

∫

(0,∞)

(

exp−λr −1 + λr
)

ν(dr),

where a ∈ R, σ ≥ 0,
∫
(r ∧ r2)ν(dr) <∞.

The ψ-continuous state branching process (CSBP) is the
R+-valued Markov process (Zt)t≥0 with Laplace functional

E
Z

a (e
−λZt ) = e−auλ(t),

where uλ(t) solves the evolution equation

u̇λ(t) = −ψ(uλ(t)), uλ(0) = λ.



Super-Brownian motion

A ψ-super-Brownian motion is the Mf (R
d ) (measure)-valued

process (Xt)t≥0 with Laplace functional

E
X

X0
(e−〈Xt ,φ〉) = e−〈X0,vφ(t,·)〉,

where vφ(t) satisfies the PDE

v̇φ(t, x) =
1

2
∆vφ(t, x)− ψ(vφ(t, x)), vφ(0, x) = φ(x).
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∆vφ(t, x)− ψ(vφ(t, x)), vφ(0, x) = φ(x).

The cases ψ(u) = u2 and ψ(u) = uα, α ∈ (0, 2), correspond
respectively to binary and α-stable branching.

(If α ∈ (1, 2), we typically write α = 1 + β, β ∈ (0, 1).)



The compact support property

Fact: for ψ(u) = u2 and ψ(u) = uα, α ∈ (1, 2), the
ψ-super-Brownian motion Xt satisfies the compact support

property:

If X0 has compact support,

⋃

s∈[0,t]

supp(Xs) is compact for all t > 0 a.s.



CSBP and SDE

Lamperti transform: the ψ-CSBP is the Lévy process with
characteristic exponent ψ time-changed to run at speed equal to
its size.

Suppose that ψ is the branching mechanism of a pure jump CSBP
with Lévy measure ν. Let N(dr , dz , ds) be a compensated Poisson
random measure with intensity ν(dr)dzds. We may then write

Zt − Z0 =

∫
t

0

∫
Zs−

0

∫ ∞

0
rN(dr , dz , ds).
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CSBP and SDE

If ψ(u) = uα, then ν(dr) = cαr
−1−α, and a scaling calculation

shows that the following processes are equal in law:

∫
t

0

∫
Zs−

0

∫ ∞

0
r N(dr , dz , ds) and

∫
t

0

∫ 1

0

∫ ∞

0
(Z

1/α
s− r)N(dr , dz , ds).

In particular, Zt satisfies the jump SDE

dZt = Z
1/α
t− dWt ,

where Wt is a spectrally positive α-stable process.
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In particular, Zt satisfies the jump SDE

dZt = Z
1/α
t− dWt ,

where Wt is a spectrally positive α-stable process.

The CSBP associated to ψ(u) = u2 is Feller’s branching diffusion

dZt = Z
1/2
t dBt .



Super-Brownian motion and SPDE

Similarly, for ψ(u) = u2, the density of ψ-super-Brownian motion
in d = 1 satisfies

∂tX (t, x) =
1

2
∆X (t, x) + X (t, x)1/2ξ̇2(t, x), t > 0, x ∈ R.

where ξ̇2 is space-time white Gaussian noise.
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where ξ̇2 is space-time white Gaussian noise.

For ψ(u) = uα, the density of ψ-super-Brownian motion for
d < 2

α−1 satisfies

∂tX (t, x) =
1

2
∆X (t, x) + X (t, x)1/αξ̇α(t, x), t > 0, x ∈ R

d .

where ξ̇α is space-time white (spectrally positive) α-stable noise.



State-dependent branch rates

In a non-linear CSBP, the branch rate is a function of the total
population size: for some increasing R : R+ → R+,
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population size: for some increasing R : R+ → R+,

Zt − Z0 =

∫
t

0

∫
R(Zs−)

0

∫ ∞

0
rN(dr , dz , ds).

In the Brownian and stable cases, we respectively have

dZt = R(Zt)
1/2dBt

and
dZt = R(Zt−)

1/αdWt .
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Let γ > 0, α ∈ (1, 2], and d < 2
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For what values of γ does X (t, ·) have compact support?



Compact support - Gaussian noise.

Let α = 2. (Gaussian noise; d = 1.) Consider a non-negative
solution to
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Theorem (Mueller, 1990)

If γ ≥ 1, X (t, x) > 0 for all t > 0, x ∈ R.
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Compact support - stable noise (main result)

Let α ∈ (1, 2). (α-stable noise; d < 2
α−1 .) Consider a non-negative

solution to

∂tX (t, x) =
1

2
∆X (t, x) + X (t, x)γ ξ̇α(t, x), t > 0, x ∈ R

d .

Theorem (H. 2022+)

(d = 1) If 2− α < γ < 1, X has the compact support
property.

(d > 1) If 1/α ≤ γ < 1, X has the compact support property.



Elements of the proof

The proof uses the method of Krylov.

First let d = 1. Suppose supp(X0) ⊂ (−R ,R). Mass moves
continuously by diffusion, so if Xt([R ,∞)) > 0, we must have
At(R) > 0, where

At(x) =

∫
t

0
X (s, x)ds.

⇒ It suffices to show that At(x) = 0 for some x <∞.
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Integration by parts gives

∫ ∞

x

(y − x)Yt(y)dy = At(x) +

∫

(0,t]×R

(y − x)+Ys(y)
γξ(ds, dy).



Elements of the proof

Use the IBP formula to obtain estimates of the following form: for
x1 ≈ x0 + r ,

P(At(x1) ≥ a) ≤ P(At(x0) ≥ b) + Error(a, b, t, r).



Elements of the proof

Use the IBP formula to obtain estimates of the following form: for
x1 ≈ x0 + r ,

P(At(x1) ≥ a) ≤ P(At(x0) ≥ b) + Error(a, b, t, r).

Iterating this estimate for a good choice of parameters, one
obtains, for some L > 0,

P(At(x + L) > 0) ≤ P(At(x) > ǫ) + O(ǫ).

Taking x → ∞ and ǫ→ 0, conclude that

lim
x→∞

P(At(x) > 0) = 0.



Elements of the proof; other remarks

For d > 1: the occupation density At(x) is replaced with the
occupation density along a (d − 1)-dimensional hyperplane or
sphere. Some complexities arise.



Elements of the proof; other remarks

For d > 1: the occupation density At(x) is replaced with the
occupation density along a (d − 1)-dimensional hyperplane or
sphere. Some complexities arise.

It is supposed to be easy for small γ - what goes wrong?



A result on explosions

Concerning blow-up, consider the following theorem: let X be a
non-negative solution to

∂tX (t, x) =
1

2
∆X (t, x) + X (t, x)γ ξ̇2(t, x), t > 0, x ∈ R.

Theorem (Mueller, 2000)

If γ > 3/2, ‖Xt‖∞ → ∞ in finite time a.s.



Thank you!


