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Overview

Model (Derrida and Retaux) :
Let X0 be random variable taking values in {0, 1, 2, ...}. Let

Xn+1
law= (X (1)

n + X (2)
n − 1)+, ∀n ≥ 0,

with two independent copies X (1)
n , X (2)

n of Xn.

Question :
What can we say about the asymptotic behaviors of Xn as n→∞ ?



Overview

Model (Derrida and Retaux) :
Let X0 be random variable taking values in {0, 1, 2, ...}. Let

Xn+1
law= (X (1)

n + X (2)
n − 1)+, ∀n ≥ 0,

with two independent copies X (1)
n , X (2)

n of Xn.

Question :
What can we say about the asymptotic behaviors of Xn as n→∞ ?



Overview

Three regimes :
I Xn →∞ (exponentially fast) : the supercritical regime ;

I Derrida–Retaux’ conjecture on the free energy ;
I further discussions.

I Xn → 0 (polynomial decay) : the critical regime ;
I Open questions on the behaviors of Xn.

I Xn → 0 (exponential decay) : the subcritical regime ;
I The dual Derrida–Retaux conjecture.
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The discrete Derrida–Retaux model

Motivations/Related models

I Toy model of a hierarchical renormalization model [infinite
order phase transition on the localized/delocalized regime] ;

I Collet, Eckmann, Glaser and Martin (1984) [a simplified
spin-glass model] ;

I Aldous and Bandyopadhyay (2005) "Max-type recursive
distributional equations" ;

I Parking problem on a tree (Goldschmidt and Przykucki
(2016), Curien and Hénard (2019), Contat and Curien
(2021+)).
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Pinning model on a hierarchical lattice. Derrida, Hakim and Vannimenus (1992) :
Fix an integer B ≥ 2 (for e.g. B = 3).
1. At level 0, there is a unique segment.
2. Rule : Each segment gives B branches consisting of 2 segments each.

Level n = 0 Level n = 1

WALL
WALL

WALL

d0

d1

d0

d1

d2

ω1

ω2



The partition function Zn := ES exp
(∑2n

i=1 ωi1{Si−1=di−1,Si =di}
)
.

level n = 2
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Pinning model on a hierarchical lattice

I We have

Zn+1 = Z (1)
n Z (2)

n + B − 1
B ,

with two independent copies Z (1)
n , Z (2)

n of Zn.
I See Monthus and Garet (2008), Derrida, Giacomin, Lacoin

and Toninelli (2009), Lacoin and Toninelli (2009), Giacomin,
Lacoin and Toninelli (2010, 2011), Berger and Toninelli (2013)
for the studies of this model [disorder relevance, critical line...]



Pinning model on a hierarchical lattice

I Let Xn := logZn. Then

Xn+1 = logZn+1

= log e(X (1)
n +X (2)

n ) + B − 1
B

∼ X (1)
n + X (2)

n , if X (1)
n + X (2)

n is large.

I If Xn ≥ log(B − 1), a.s., then Xn+1 ≥ log(B − 1) a.s.



Derrida and Retaux’ model

I For any n ≥ 0,

Xn+1
law= max(X (1)

n + X (2)
n , log(B − 1)),

with two independent copies X (1)
n , X (2)

n of Xn.
I After a linear transformation, the recursive equation becomes

Xn+1
law= (X (1)

n + X (2)
n − 1)+, ∀n ≥ 0,

with two independent copies X (1)
n , X (2)

n of Xn.



Derrida and Retaux’ model

level 0

level 1

level 2

level n

X (1)
0 X (2)

0 X (3)
0 X (4)

0
X (5)
0 X (6)

0 a b

X (1)
1 X (2)

1 X (3)
1

(a + b − 1)+

X (1)
n−1 X (2)

n−1

Xn



Derrida and Retaux’ model

I Free energy : F∞ := limn→∞
E(Xn)
2n ∈ [0,∞) exists.

Proof : As Xn
law= (X (1)

n−1 + X (2)
n−1 − 1)+,

2E(Xn−1) ≥ E(Xn) ≥ 2E(Xn−1)− 1, implying that

F∞ := lim
n→∞

↓ E(Xn)
2n = lim

n→∞
↑ E(Xn)− 1

2n .

I Let
X0

law= (1− p)δ{0} + pδ{ξ},

with 0 ≤ p ≤ 1 and ξ > 0 a positive random variable. Define

pc := sup{0 ≤ p ≤ 1 : F∞(p) = 0}.
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Derrida and Retaux’ model

Question 1 : Value of pc .
I Example : if X0

law= (1− p)δ{0} + pδ{2}, then pc =?

Question 2 :
I If pc < 1, what is the behavior of F∞(p) as p ↓ pc ? [nearly

supercritical regime] ;
I At p = pc , what is the behavior of Xn ? [critical regime] ;
I If pc > 0, what is the behavior of Xn when p < pc ?

[subcritical regime].
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Value of pc

Theorem (Collet, Eckman, Glaser and Martin 1984)
Let X0

law= (1− p)δ{0} + pδ{ξ}. Suppose that ξ ∈ {1, 2, ...}. Then

pc = 1
1 + E((ξ − 1)2ξ) .

As example, if ξ ≡ 2, then pc = 1
5 .

Open problem
Find pc for a general r.v. ξ ∈ R+ ; or even when ξ ∈ 1

2N ?
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Derrida and Retaux’ model

Corollary
For any general r.v. ξ ∈ R+,

pc > 0⇐⇒ E(ξ 2ξ) <∞.

Open question
Is there any probabilistic proof (like that of Lyons, Pemantle and
Peres) on the above L log L-criterion ?
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Universalities at or near criticality : the supercritical case

The Derrida–Retaux conjecture on the free energy
Let X0

law= (1− p)δ{0} + pδ{ξ}. Suppose that ξ ∈ {1, 2, ...}. Under
some integrability assumptions on ξ,

F∞(p) = exp
(
− K + o(1)

(p − pc)1/2
)
, p ↓ pc ,

for some constant K > 0.



Universality at the critical case. Let X0
law= (1− p)δ{0} + pδ{ξ} and

ξ ∈ {1, 2, ...}.

Conjecture
If E(ξ3 2ξ) <∞ and p = pc , then

I

P(Xn 6= 0) ∼ 4
n2 , n→∞.

I Conditionally on {Xn 6= 0}, Xn
(d)−→Geometric(12).

Conjecture (stable case)
If P(ξ = k) ∼ c2−kk−α with 2 < α ≤ 4 and p = pc , then

P(Xn 6= 0) ∼ α(α− 2)
2n2 , n→∞.

see Derrida and Shi (2020).
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The dual Derrida–Retaux conjecture at the subcritical
case. Let X0

law= (1− p)δ{0} + pδ{ξ} and ξ ∈ {1, 2, ...}.

Conjecture
Under suitable integrability assumption on ξ, for p < pc ,

logP(Xn 6= 0) ∼ −I(p)n, n→∞,

with
I(p) ∼ c(pc − p)1/2, p ↑ pc .



The supercritical case : results on the free energy

Main assumption
Let X0

law= (1− p)δ{0} + pδ{ξ}. Assume that ξ takes values in
{1, 2, ...} and
1. either E(ξ32ξ) <∞
2. or ∃α ∈ (−∞, 4] such that P(ξ > x) ≈ x−α2−x , x →∞.

Consequence of Collet, Eckman, Glaser and Martin 1984 :
pc > 0 (⇐⇒ E[X02X0 ] <∞) iff α ∈ (2, 4] or E(ξ32ξ) <∞.
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Nearly supercritical regime, case pc > 0 : Chen, Dagard, Derrida, H.,

Lifshits, Shi (2021)

Theorem (a weaker version of Derrida–Retaux’ conjecture)
If E(ξ32ξ) <∞, then

F∞(p) = exp
(
− (p − pc)−

1
2+o(1)

)
, p ↓ pc .



Nearly supercritical regime, case pc > 0 : Chen, Dagard, Derrida, H.,

Lifshits, Shi (2021)

Theorem
If P(ξ > x) ≈ x−α2−x with 2 < α ≤ 4, then

F∞(p) = exp
(
− (p − pc)−

1
α−2+o(1)

)
, p ↓ pc .

Remarks :
I If P(ξ > x) ∼ c x−22−x , then

F∞(p) = exp
(
− e(c+o(1))/p), p ↓ 0.

I See Chen and Shi (2021) for the stable case (2 < α < 4).
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The critical case : Chen, H., Shi (2022)

Theorem
If E(rX0) <∞ for some r > 2 and p = pc , then

I

P(Xn > 0) = n−2+o(1), n→∞.

I

E(Xn) = n−2+o(1), n→∞.
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The subcritical case : Chen, H., and Shi (2023+)

Theorem
If E(rX0) <∞ for some r > 2 and p = pc − ε with ε ∈ (0, pc),
then

−c ′ε
1
2+o(1) ≤ lim inf

n→∞
1
n logE(Xn) ≤ lim sup

n→∞

1
n logE(Xn) ≤ −cε

1
2 .

The same holds if we replace E(Xn) by P(Xn 6= 0).

Open problem
Prove, under some suitable integrability assumption on the law of X0, the
existence of limn→∞

1
n logE(Xn) for all p ∈ (0, pc).
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Extension : The Galton-Watson case

Let ν be an integer-valued r.v. such that m := E(ν) ∈ (1,∞).
Consider the recursive equation

Xn+1
law= (

ν∑
i=1

X (i)
n − 1)+,

where X (1)
n ,X (2)

n , ..., are i.i.d. copies of Xn, and independent of ν.



Problem
Study the same questions (critical pc , Derrida–Retaux’ conjecture)
for this case.

I Only solved when ν = m equals some integer m ≥ 3 a.s.
I Case when X0 and ν belong to a special family of

distributions. Work in progress with Gerold Alsmeyer and
Bastien Mallein.

Further open problems and heuristics
I See Derrida and Shi (2020).
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Proofs of Theorems :

I Analytic tool (for the upper bound) : using the generating
functions ;

I Probabilistic tool (for the lower bound) : coupling with the
critical Derrida–Retaux tree.



Analytic tool : generating functions

I Let Gn(s) := E(sXn). Then

Gn+1(s) = 1
s Gn(s)2 + (1− 1

s )Gn(0)2.

I Taking the derivative and removing the term Gn(0), we get

Gn+1(s)− s(s − 1)G ′n+1(s) = Gn(s)(Gn(s)− 2(s − 1)G ′n(s)).

I In particular at s = 2 we get

Gn+1(2)− 2G ′n+1(2) = Gn(2)(Gn(2)− 2G ′n(2)).

See Collet et al. (1984).
I Consequence : p = pc iff G0(2)− 2G ′0(2) = 0.



Proofs of Derrida–Retaux conjecture and the dual version

I DR conjecture and the dual version :

F∞(p) ≈ e−K(p−pc)−
1
2 , p ↓ pc ,

P(Xn 6= 0) ≈ e−K ′(pc−p)
1
2 n, n→∞, p ↑ pc .

I Where does it come from the rate ε± 1
2 with ε := |p − pc | ?

Heuristically, the system needs a time of order ε− 1
2 before

drifting away definitely.
I Coupling with the critical Derrida–Retaux tree.



Probabilistic tool : the DR tree T(red)

I Let (Yn) be a Derrida-Retaux process in the critical regime
(i.e. Y0

law= (1− pc)δ0 + pcδξ).
I Let T be an infinite binary tree with Y (x), |x | = 0 being i.i.d.

copies of Y0.
I Define for any x ∈ T, Y (x) := (Y (x (1)) + Y (x (2))− 1)+.
I Let en be the first lexicographic vertex in the n-th generation

of the binary tree T [then Yn
law= Y (en) for any n ≥ 0].

1 0 0 0 4 0 0 0 2 3 0 1 0 0 0 0

0 0 3 0 4 0 0 0

0 2 3 0

21

2

e0

e1

e2

e3

e4



Open paths (in red) in Y (x), x ∈ T
I For any x ∈ T, we call (xk , 0 ≤ k ≤ |x |) a path leading to x if

xk+1 is the (unique) child of xk for any 0 ≤ k < |x | − 1.
I A path is said open if for any vertex x in the path,

Y (x (1)) + Y (x (2)) ≥ 1.
I Let Tred

n be the tree of open paths leading to en and Nn be
the number of leaves of Tred

n . [Below N4 = 6.]
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0 0 3 0 4 0 0 0
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Proof in the nearly supercritical regime

To show :
If E(X 3

0 2X0) <∞, then

F∞(p) = exp
(
− (p − pc)−

1
2+o(1)

)
, p ↓ pc .

Remark
Recall that F∞ = limn→∞ ↑ E(Xn)−1

2n . It is equivalent to show

n0 = (p − pc)−
1
2+o(1),

where n0 := inf{n ≥ 1 : E(Xn) > 1}.
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Coupling between the supercritical regime and the critical regime

I Define (X0,Y0) such that X0
law= (1− p)δ0 + pδξ with

p = pc + ε such that X0 ≥ Y0 a.s. and
P(X0 = Y0|Y0 > 0) = 1.

I Define X (u), u ∈ T as for Y (u), u ∈ T.
I Let N(0)

n be the number of open paths (xi)0≤i≤n leading to en

such that Y (x0) = 0 [Below N(0)
4 = 2].

1 0 0 0 4 0 0 0 2 3 0 1 0 0 0 0

0 0 3 0 4 0 0 0

0 2 3 0

21
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e4

Xn “≥” εN(0)
n .

I (Coupling inequality) For all r ≥ 0, n, k ≥ 1, ` ≤ ε r/2,

E(Xn+k+`) ≥ 2`−1 εE
(
N(0)

n 2Yn1{N(0)
n ≥r ,Yn=k)}

)
.
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Proof in the subcritical case : X0
law= (1− p)δ0 + pδξ with p = pc − ε.

(lower bound) To show :
If E(rX0) <∞ for some r > 2 and ε > 0 is small, then

lim inf
n→∞

1
n logP(Xn ≥ 1) ≥ −ε

1
2+o(1).

Lemma
We have

P(Xn ≥ 1) ≥ E[( p
pc

)Nn1{Yn≥1}].

Remark
Conditioned on {Yn ≥ 1}, Nn ≈ n2.
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Proof in the subcritical case : X0
law= (1− p)δ0 + pδξ with p = pc − ε.

(lower bound) To show :
If E(rX0) <∞ for some r > 2 and ε > 0 is small, then

lim inf
n→∞

1
n logP(Xn ≥ 1) ≥ −ε

1
2+o(1).

Lemma
We have

P(Xn ≥ 1) ≥ E[( p
pc

)Nn1{Yn≥1}].

Remark
Conditioned on {Yn ≥ 1}, Nn ≈ n2.



Proof in the subcritical case : lower bound.

Proposition
We have

lim inf
n→∞

1
n logP(Yn ≥

n
j , Nn ≤ jn) ≥ −j−1+o(1).

Consequence :

P(Xn ≥ 1) ≥ E[( p
pc

)Nn1{Yn≥1,Nn≤jn}] ≥ ( p
pc

)jne−j−1+o(1)n,

and we choose j = (pc − p)−1/2+o(1).



Proof in the subcritical case : lower bound.

Proposition
We have

lim inf
n→∞

1
n logP(Yn ≥

n
j , Nn ≤ jn) ≥ −j−1+o(1).

Consequence :

P(Xn ≥ 1) ≥ E[( p
pc

)Nn1{Yn≥1,Nn≤jn}] ≥ ( p
pc

)jne−j−1+o(1)n,

and we choose j = (pc − p)−1/2+o(1).



Universality on the “red” tree Tred
n , consisting of open paths

Conjecture : Derrida and Shi (2020)
Let x > 0. Conditionally on Yn = bxnc, Nn

n2 converges in law,
furthermore, 1

nT
red
n converges under the Gromov-Hausdorff metric

to a random continuous tree T [T appeared in H., Mallein and Pain (2020)
as the limit of a continuous-time Derrida–Retaux model in the critical regime].



THANK YOU !
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