On the discrete-time Derrida-Retaux model

Yueyun Hu (Paris XIII)

based on joint works with

- Xinxing Chen, Victor Dagard, Bernard Derrida, Mikhail Lifshits, and Zhan Shi (AoP 2021)
- Xinxing Chen and Zhan Shi (PTRF 2022) and (preprint 2023+)

> "Branching Processes and Applications"
> Angers, 22/05/2023

Overview

Model (Derrida and Retaux) :
Let X_{0} be random variable taking values in $\{0,1,2, \ldots\}$. Let

$$
X_{n+1} \stackrel{\text { law }}{=}\left(X_{n}^{(1)}+X_{n}^{(2)}-1\right)^{+}, \quad \forall n \geq 0
$$

with two independent copies $X_{n}^{(1)}, X_{n}^{(2)}$ of X_{n}.
Question
What can we say about the asymptotic behaviors of X_{n} as $n \rightarrow \infty$?

Overview

Model (Derrida and Retaux) :

Let X_{0} be random variable taking values in $\{0,1,2, \ldots\}$. Let

$$
X_{n+1} \stackrel{\text { law }}{=}\left(X_{n}^{(1)}+X_{n}^{(2)}-1\right)^{+}, \quad \forall n \geq 0
$$

with two independent copies $X_{n}^{(1)}, X_{n}^{(2)}$ of X_{n}.
Question:
What can we say about the asymptotic behaviors of X_{n} as $n \rightarrow \infty$?

Overview

Three regimes:

- $X_{n} \rightarrow \infty$ (exponentially fast) : the supercritical regime;
- Derrida-Retaux' conjecture on the free energy; - further discussions.

Overview

Three regimes :

- $X_{n} \rightarrow \infty$ (exponentially fast) : the supercritical regime;
- Derrida-Retaux' conjecture on the free energy;
- further discussions.
- $X_{n} \rightarrow 0$ (polynomial decay) : the critical regime ; - Open questions on the behaviors of X_{n}.
$X_{n} \rightarrow 0$ (exponential decay) : the subcritical regime; - The dual Derrida-Retaux conjecture.

Overview

Three regimes :

- $X_{n} \rightarrow \infty$ (exponentially fast) : the supercritical regime;
- Derrida-Retaux' conjecture on the free energy;
- further discussions.
- $X_{n} \rightarrow 0$ (polynomial decay) : the critical regime;
- Open questions on the behaviors of X_{n}.
- $X_{n} \rightarrow 0$ (exponential decay) : the subcritical regime;
- The dual Derrida-Retaux conjecture.

Overview

Three regimes:

- $X_{n} \rightarrow \infty$ (exponentially fast) : the supercritical regime;
- Derrida-Retaux' conjecture on the free energy;
- further discussions.
- $X_{n} \rightarrow 0$ (polynomial decay) : the critical regime;
- Open questions on the behaviors of X_{n}.
- $X_{n} \rightarrow 0$ (exponential decay) : the subcritical regime;
- The dual Derrida-Retaux conjecture.

Outline

Motivation and conjectures
From hierarchical model to Derrida and Retaux' model Universalities at or near criticality

Results

The nearly supercritical regime
The critical regime
The subcritical regime

Extension and open questions

Proofs

The discrete Derrida-Retaux model

Motivations/Related models

- Toy model of a hierarchical renormalization model [infinite order phase transition on the localized/delocalized regime] ;
- Collet, Eckmann, Glaser and Martin (1984) [a simplified spin-glass model]
- Aldous and Bandyopadhyay (2005) "Max-type recursive distributional equations"

The discrete Derrida-Retaux model

Motivations/Related models

- Toy model of a hierarchical renormalization model [infinite order phase transition on the localized/delocalized regime];
- Collet, Eckmann, Glaser and Martin (1984) [a simplified spin-glass model];
- Aldous and Bandyopadhyay (2005) "Max-type recursive distributional equations"

The discrete Derrida-Retaux model

Motivations/Related models

- Toy model of a hierarchical renormalization model [infinite order phase transition on the localized/delocalized regime] ;
- Collet, Eckmann, Glaser and Martin (1984) [a simplified spin-glass model];
- Aldous and Bandyopadhyay (2005) "Max-type recursive distributional equations";
- Parking problem on a tree (Goldschmidt and Przykucki (2016), Curien and Hénard (2019), Contat and Curien (2021+)).

The discrete Derrida-Retaux model

Motivations/Related models

- Toy model of a hierarchical renormalization model [infinite order phase transition on the localized/delocalized regime] ;
- Collet, Eckmann, Glaser and Martin (1984) [a simplified spin-glass model];
- Aldous and Bandyopadhyay (2005) "Max-type recursive distributional equations";
- Parking problem on a tree (Goldschmidt and Przykucki (2016), Curien and Hénard (2019), Contat and Curien (2021+)).

Pinning model on a hierarchical lattice. Derrida, Hakim and Vannimenus (1992) :
Fix an integer $B \geq 2$ (for e.g. $B=3$).

1. At level 0 , there is a unique segment.
2. Rule : Each segment gives B branches consisting of 2 segments each.

Level $n=0$

Level $n=1$

The partition function $Z_{n}:=E_{S} \exp \left(\sum_{i=1}^{2^{n}} \omega_{i} 1_{\left\{S_{i-1}=d_{i-1}, S_{i}=d_{i}\right\}}\right)$.
level $n=2$

Pinning model on a hierarchical lattice

- We have

$$
Z_{n+1}=\frac{Z_{n}^{(1)} Z_{n}^{(2)}+B-1}{B}
$$

with two independent copies $Z_{n}^{(1)}, Z_{n}^{(2)}$ of Z_{n}.

- See Monthus and Garet (2008), Derrida, Giacomin, Lacoin and Toninelli (2009), Lacoin and Toninelli (2009), Giacomin, Lacoin and Toninelli (2010, 2011), Berger and Toninelli (2013) for the studies of this model [disorder relevance, critical line...]

Pinning model on a hierarchical lattice

- Let $X_{n}:=\log Z_{n}$. Then

$$
\begin{aligned}
X_{n+1} & =\log Z_{n+1} \\
& =\log \frac{e^{\left(X_{n}^{(1)}+X_{n}^{(2)}\right)}+B-1}{B} \\
& \sim X_{n}^{(1)}+X_{n}^{(2)}, \quad \text { if } X_{n}^{(1)}+X_{n}^{(2)} \text { is large. }
\end{aligned}
$$

- If $X_{n} \geq \log (B-1)$, a.s., then $X_{n+1} \geq \log (B-1)$ a.s.

Derrida and Retaux' model

- For any $n \geq 0$,

$$
X_{n+1} \stackrel{\text { law }}{=} \max \left(X_{n}^{(1)}+X_{n}^{(2)}, \log (B-1)\right)
$$

with two independent copies $X_{n}^{(1)}, X_{n}^{(2)}$ of X_{n}.

- After a linear transformation, the recursive equation becomes

$$
X_{n+1} \stackrel{\text { law }}{=}\left(X_{n}^{(1)}+X_{n}^{(2)}-1\right)^{+}, \quad \forall n \geq 0
$$

with two independent copies $X_{n}^{(1)}, X_{n}^{(2)}$ of X_{n}.

Derrida and Retaux' model

Derrida and Retaux' model

- Free energy : $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(X_{n}\right)}{2^{n}} \in[0, \infty)$ exists.

$2 \mathbb{E}\left(X_{n-1}\right) \geq \mathbb{E}\left(X_{n}\right) \geq 2 \mathbb{E}\left(X_{n-1}\right)-1$, implying that

$$
F_{\infty}:=\lim _{n \rightarrow \infty} \downarrow \frac{\mathbb{T}\left(X_{n}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \uparrow \frac{\mathbb{C}\left(X_{n}\right)-1}{2^{n}} .
$$

with $0 \leq p \leq 1$ and $\xi>0$ a positive random variable. Define

Derrida and Retaux' model

- Free energy : $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(X_{n}\right)}{2^{n}} \in[0, \infty)$ exists.

Proof: As $X_{n} \stackrel{\text { law }}{=}\left(X_{n-1}^{(1)}+X_{n-1}^{(2)}-1\right)^{+}$, $2 \mathbb{E}\left(X_{n-1}\right) \geq \mathbb{E}\left(X_{n}\right) \geq 2 \mathbb{E}\left(X_{n-1}\right)-1$, implying that

$$
F_{\infty}:=\lim _{n \rightarrow \infty} \downarrow \frac{\mathbb{E}\left(X_{n}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \uparrow \frac{\mathbb{E}\left(X_{n}\right)-1}{2^{n}}
$$

Derrida and Retaux' model

- Free energy : $F_{\infty}:=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(X_{n}\right)}{2^{n}} \in[0, \infty)$ exists.

Proof: As $X_{n} \stackrel{\text { law }}{=}\left(X_{n-1}^{(1)}+X_{n-1}^{(2)}-1\right)^{+}$, $2 \mathbb{E}\left(X_{n-1}\right) \geq \mathbb{E}\left(X_{n}\right) \geq 2 \mathbb{E}\left(X_{n-1}\right)-1$, implying that

$$
F_{\infty}:=\lim _{n \rightarrow \infty} \downarrow \frac{\mathbb{E}\left(X_{n}\right)}{2^{n}}=\lim _{n \rightarrow \infty} \uparrow \frac{\mathbb{E}\left(X_{n}\right)-1}{2^{n}}
$$

- Let

$$
x_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}},
$$

with $0 \leq p \leq 1$ and $\xi>0$ a positive random variable. Define

$$
p_{c}:=\sup \left\{0 \leq p \leq 1: F_{\infty}(p)=0\right\} .
$$

Derrida and Retaux' model

Question 1 : Value of p_{c}.

- Example : if $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{2\}}$, then $p_{c}=$?

Question 2

- If $p_{C}<1$ what is the behavior of $F_{\infty}(p)$ as $p \downarrow p_{c}$? [nearly supercritical regime]
- At $p=p_{c}$, what is the behavior of X_{n} ? [critical regime];
- If $p_{c}>0$, what is the behavior of X_{n} when $p<p_{c}$? [subcritical regime].

Derrida and Retaux' model

Question 1 : Value of p_{c}.

- Example : if $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{2\}}$, then $p_{c}=$?

Question 2 :

- If $p_{c}<1$, what is the behavior of $F_{\infty}(p)$ as $p \downarrow p_{c}$? [nearly supercritical regime];
- At $p=p_{c}$, what is the behavior of X_{n} ? [critical regime];
- If $p_{c}>0$, what is the behavior of X_{n} when $p<p_{c}$? [subcritical regime].

Value of p_{c}

Theorem (Collet, Eckman, Glaser and Martin 1984)
Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$. Suppose that $\xi \in\{1,2, \ldots\}$. Then

$$
p_{c}=\frac{1}{1+\mathbb{E}\left((\xi-1) 2^{\xi}\right)} .
$$

As example, if $\xi \equiv 2$, then $p_{c}=\frac{1}{5}$.
Open problem
Find p_{c} for a general r.v. $\xi \in \mathbb{R}_{+}$; or even when $\xi \in \frac{1}{2} \mathbb{N}$?

Value of p_{c}

Theorem (Collet, Eckman, Glaser and Martin 1984)
Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$. Suppose that $\xi \in\{1,2, \ldots\}$. Then

$$
p_{c}=\frac{1}{1+\mathbb{E}\left((\xi-1) 2^{\xi}\right)}
$$

As example, if $\xi \equiv 2$, then $p_{c}=\frac{1}{5}$.
Open problem
Find p_{c} for a general r.v. $\xi \in \mathbb{R}_{+}$; or even when $\xi \in \frac{1}{2} \mathbb{N}$?

Derrida and Retaux' model

Corollary
For any general r.v. $\xi \in \mathbb{R}_{+}$,

$$
p_{c}>0 \Longleftrightarrow \mathbb{E}\left(\xi 2^{\xi}\right)<\infty
$$

Open question
Is there any probabilistic proof (like that of Lyons, Pemantle and Peres) on the above $L \log$ L-criterion?

Derrida and Retaux' model

Corollary
For any general r.v. $\xi \in \mathbb{R}_{+}$,

$$
p_{c}>0 \Longleftrightarrow \mathbb{E}\left(\xi 2^{\xi}\right)<\infty .
$$

Open question
Is there any probabilistic proof (like that of Lyons, Pemantle and Peres) on the above $L \log L$-criterion?

Universalities at or near criticality : the supercritical case

The Derrida-Retaux conjecture on the free energy Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$. Suppose that $\xi \in\{1,2, \ldots\}$. Under some integrability assumptions on ξ,

$$
F_{\infty}(p)=\exp \left(-\frac{K+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right), \quad p \downarrow p_{c}
$$

for some constant $K>0$.

Universality at the critical case. Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$ and $\xi \in\{1,2, \ldots\}$.

Conjecture
If $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n} \neq 0\right) \sim \frac{4}{n^{2}}, \quad n \rightarrow \infty
$$

- Conditionally on $\left\{X_{n} \neq 0\right\}, X_{n} \xrightarrow{(d)}$ Geometric $\left(\frac{1}{2}\right)$.

Universality at the critical case. Let $X_{0} \stackrel{ }{ }{ }^{\text {law }}(1-p) \delta_{\{0\}}+p \delta_{\{ \}\}}$and $\xi \in\{1,2, \ldots\}$.

Conjecture
If $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n} \neq 0\right) \sim \frac{4}{n^{2}}, \quad n \rightarrow \infty
$$

- Conditionally on $\left\{X_{n} \neq 0\right\}, X_{n} \xrightarrow{(d)} \operatorname{Geometric}\left(\frac{1}{2}\right)$.

Conjecture (stable case)
If $\mathbb{P}(\xi=k) \sim c 2^{-k} k^{-\alpha}$ with $2<\alpha \leq 4$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n} \neq 0\right) \sim \frac{\alpha(\alpha-2)}{2 n^{2}},
$$

see Derrida and Shi (2020).

Universality at the critical case. Let $X_{0}{ }^{\ln w}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$ and $\xi \in\{1,2, \ldots\}$.

Conjecture
If $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n} \neq 0\right) \sim \frac{4}{n^{2}}, \quad n \rightarrow \infty
$$

- Conditionally on $\left\{X_{n} \neq 0\right\}, X_{n} \xrightarrow{(d)}$ Geometric $\left(\frac{1}{2}\right)$.

Conjecture (stable case)
If $\mathbb{P}(\xi=k) \sim c 2^{-k} k^{-\alpha}$ with $2<\alpha \leq 4$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n} \neq 0\right) \sim \frac{\alpha(\alpha-2)}{2 n^{2}}, \quad n \rightarrow \infty
$$

see Derrida and Shi (2020).

The dual Derrida-Retaux conjecture at the subcritical case. Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$ and $\xi \in\{1,2, \ldots\}$.

Conjecture
Under suitable integrability assumption on ξ, for $p<p_{c}$,

$$
\log \mathbb{P}\left(X_{n} \neq 0\right) \sim-l(p) n, \quad n \rightarrow \infty
$$

with

$$
I(p) \sim c\left(p_{c}-p\right)^{1 / 2}, \quad p \uparrow p_{c}
$$

The supercritical case : results on the free energy

Main assumption
Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$. Assume that ξ takes values in $\{1,2, \ldots\}$ and

1. either $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$
2. or $\exists \alpha \in(-\infty, 4]$ such that $\mathbb{P}(\xi>x) \approx x^{-\alpha} 2^{-x}, x \rightarrow \infty$.

Consequence of Collet, Eckman, Glaser and Martin 1984
$p_{c}>0\left(\Longleftrightarrow \mathbb{E}\left[X_{0} 2^{X_{0}}\right]<\infty\right)$ iff $\alpha \in(2,4]$ or $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$.

The supercritical case : results on the free energy

Main assumption
Let $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{\{0\}}+p \delta_{\{\xi\}}$. Assume that ξ takes values in $\{1,2, \ldots\}$ and

1. either $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$
2. or $\exists \alpha \in(-\infty, 4]$ such that $\mathbb{P}(\xi>x) \approx x^{-\alpha} 2^{-x}, x \rightarrow \infty$.

Consequence of Collet, Eckman, Glaser and Martin 1984 :
$p_{c}>0\left(\Longleftrightarrow \mathbb{E}\left[X_{0} 2^{x_{0}}\right]<\infty\right)$ iff $\alpha \in(2,4]$ or $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$.

Nearly supercritical regime, case $p_{c}>0$: Chen, Dagard, Derrida, H., Lifshits, Shi (2021)

Theorem (a weaker version of Derrida-Retaux' conjecture) If $\mathbb{E}\left(\xi^{3} 2^{\xi}\right)<\infty$, then

$$
F_{\infty}(p)=\exp \left(-\left(p-p_{c}\right)^{-\frac{1}{2}+o(1)}\right), \quad p \downarrow p_{c}
$$

Nearly supercritical regime, case $p_{c}>0$: Chen, Dagard, Derrida, H., Lifshits, Shi (2021)

Theorem
If $\mathbb{P}(\xi>x) \approx x^{-\alpha} 2^{-x}$ with $2<\alpha \leq 4$, then

$$
F_{\infty}(p)=\exp \left(-\left(p-p_{c}\right)^{-\frac{1}{\alpha-2}+o(1)}\right), \quad p \downarrow p_{c}
$$

Remarks

- See Chen and Shi (2021) for the stable case $(2<\alpha<4)$.

Nearly supercritical regime, case $p_{c}>0$: Chen, Dagard, Derrida, H.,

Lifshits, Shi (2021)

Theorem
If $\mathbb{P}(\xi>x) \approx x^{-\alpha} 2^{-x}$ with $2<\alpha \leq 4$, then

$$
F_{\infty}(p)=\exp \left(-\left(p-p_{c}\right)^{-\frac{1}{\alpha-2}+o(1)}\right), \quad p \downarrow p_{c}
$$

Remarks :

- If $\mathbb{P}(\xi>x) \sim c x^{-2} 2^{-x}$, then

$$
F_{\infty}(p)=\exp \left(-e^{(c+o(1)) / p}\right), p \downarrow 0
$$

- See Chen and Shi (2021) for the stable case $(2<\alpha<4)$.

The critical case : Chen, H., Shi (2022)

Theorem
If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n}>0\right)=n^{-2+o(1)}, \quad n \rightarrow \infty
$$

The critical case : Chen, н., Shi (2022)

Theorem
If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $p=p_{c}$, then

$$
\mathbb{P}\left(X_{n}>0\right)=n^{-2+o(1)}, \quad n \rightarrow \infty
$$

$$
\mathbb{E}\left(X_{n}\right)=n^{-2+o(1)}, \quad n \rightarrow \infty
$$

The subcritical case : Chen, H., and Shi (2023+)

Theorem

If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $p=p_{c}-\varepsilon$ with $\varepsilon \in\left(0, p_{c}\right)$, then

$$
-c^{\prime} \varepsilon^{\frac{1}{2}+o(1)} \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right) \leq-c \varepsilon^{\frac{1}{2}}
$$

The same holds if we replace $\mathbb{E}\left(X_{n}\right)$ by $\mathbb{P}\left(X_{n} \neq 0\right)$.
Open problem
Prove, under some suitable integrability assumption on the law of X_{0}, the existence of $\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right)$ for all $p \in\left(0, p_{c}\right)$.

The subcritical case : Chen, H., and Shi (2023+)

Theorem

If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $p=p_{c}-\varepsilon$ with $\varepsilon \in\left(0, p_{c}\right)$, then

$$
-c^{\prime} \varepsilon^{\frac{1}{2}+o(1)} \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right) \leq-c \varepsilon^{\frac{1}{2}}
$$

The same holds if we replace $\mathbb{E}\left(X_{n}\right)$ by $\mathbb{P}\left(X_{n} \neq 0\right)$.

Open problem

Prove, under some suitable integrability assumption on the law of X_{0}, the existence of $\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left(X_{n}\right)$ for all $p \in\left(0, p_{c}\right)$.

Extension: The Galton-Watson case

Let ν be an integer-valued r.v. such that $m:=\mathbb{E}(\nu) \in(1, \infty)$. Consider the recursive equation

$$
X_{n+1} \stackrel{\text { law }}{=}\left(\sum_{i=1}^{\nu} X_{n}^{(i)}-1\right)^{+}
$$

where $X_{n}^{(1)}, X_{n}^{(2)}, \ldots$, are i.i.d. copies of X_{n}, and independent of ν.

Problem
Study the same questions (critical p_{c}, Derrida-Retaux' conjecture) for this case.

- Only solved when $\nu=m$ equals some integer $m \geq 3$ a.s.
- Case when X_{0} and ν belong to a special family of distributions. Work in progress with Gerold Alsmeyer and Bastien Mallein.

Problem

Study the same questions (critical p_{c}, Derrida-Retaux' conjecture) for this case.

- Only solved when $\nu=m$ equals some integer $m \geq 3$ a.s.
- Case when X_{0} and ν belong to a special family of distributions. Work in progress with Gerold Alsmeyer and Bastien Mallein.

Further open problems and heuristics

- See Derrida and Shi (2020).

Proofs of Theorems :

- Analytic tool (for the upper bound) : using the generating functions;
- Probabilistic tool (for the lower bound) : coupling with the critical Derrida-Retaux tree.

Analytic tool : generating functions

- Let $G_{n}(s):=\mathbb{E}\left(s^{X_{n}}\right)$. Then

$$
G_{n+1}(s)=\frac{1}{s} G_{n}(s)^{2}+\left(1-\frac{1}{s}\right) G_{n}(0)^{2} .
$$

- Taking the derivative and removing the term $G_{n}(0)$, we get

$$
G_{n+1}(s)-s(s-1) G_{n+1}^{\prime}(s)=G_{n}(s)\left(G_{n}(s)-2(s-1) G_{n}^{\prime}(s)\right) .
$$

- In particular at $s=2$ we get

$$
G_{n+1}(2)-2 G_{n+1}^{\prime}(2)=G_{n}(2)\left(G_{n}(2)-2 G_{n}^{\prime}(2)\right)
$$

See Collet et al. (1984).

- Consequence : $p=p_{c}$ iff $G_{0}(2)-2 G_{0}^{\prime}(2)=0$.

Proofs of Derrida-Retaux conjecture and the dual version

- DR conjecture and the dual version :

$$
\begin{array}{rll}
F_{\infty}(p) & \approx e^{-K\left(p-p_{c}\right)^{-\frac{1}{2}}}, & p \downarrow p_{c}, \\
\mathbb{P}\left(X_{n} \neq 0\right) & \approx e^{-K^{\prime}\left(p_{c}-p\right)^{\frac{1}{2} n}}, & n \rightarrow \infty, p \uparrow p_{c} .
\end{array}
$$

- Where does it come from the rate $\varepsilon^{ \pm \frac{1}{2}}$ with $\varepsilon:=\left|p-p_{c}\right|$? Heuristically, the system needs a time of order $\varepsilon^{-\frac{1}{2}}$ before drifting away definitely.
- Coupling with the critical Derrida-Retaux tree.

Probabilistic tool : the DR tree $\mathbb{T}^{(r e d)}$

- Let $\left(Y_{n}\right)$ be a Derrida-Retaux process in the critical regime (i.e. $\left.Y_{0} \stackrel{\text { law }}{=}\left(1-p_{c}\right) \delta_{0}+p_{c} \delta_{\xi}\right)$.
- Let \mathbb{T} be an infinite binary tree with $Y(x),|x|=0$ being i.i.d. copies of Y_{0}.
- Define for any $x \in \mathbb{T}, Y(x):=\left(Y\left(x^{(1)}\right)+Y\left(x^{(2)}\right)-1\right)^{+}$.
- Let \mathfrak{e}_{n} be the first lexicographic vertex in the n-th generation of the binary tree \mathbb{T} [then $Y_{n} \stackrel{\text { law }}{=} Y\left(\mathfrak{e}_{n}\right)$ for any $n \geq 0$].

Open paths (in red) in $Y(x), x \in \mathbb{T}$

- For any $x \in \mathbb{T}$, we call $\left(x_{k}, 0 \leq k \leq|x|\right)$ a path leading to x if x_{k+1} is the (unique) child of x_{k} for any $0 \leq k<|x|-1$.
- A path is said open if for any vertex x in the path, $Y\left(x^{(1)}\right)+Y\left(x^{(2)}\right) \geq 1$.
- Let $\mathbb{T}_{n}^{r e d}$ be the tree of open paths leading to \mathfrak{e}_{n} and N_{n} be the number of leaves of $\mathbb{T}_{n}^{\text {red }}$. [Below $N_{4}=6$.]

Proof in the nearly supercritical regime

To show :
If $\mathbb{E}\left(X_{0}^{3} 2^{X_{0}}\right)<\infty$, then

$$
F_{\infty}(p)=\exp \left(-\left(p-p_{c}\right)^{-\frac{1}{2}+o(1)}\right), \quad p \downarrow p_{c}
$$

Remark
 Recall that $F_{\propto}=\lim _{n \rightarrow \infty} \uparrow \frac{\left(X_{n}\right)-1}{2^{n}}$. It is equivalent to show

where $n_{0}:=\inf \left\{n \geq 1: \mathbb{E}\left(X_{n}\right)>1\right\}$.

Proof in the nearly supercritical regime

To show :
If $\mathbb{E}\left(X_{0}^{3} 2^{X_{0}}\right)<\infty$, then

$$
F_{\infty}(p)=\exp \left(-\left(p-p_{c}\right)^{-\frac{1}{2}+o(1)}\right), \quad p \downarrow p_{c}
$$

Remark
Recall that $F_{\infty}=\lim _{n \rightarrow \infty} \uparrow \frac{\mathbb{E}\left(X_{n}\right)-1}{2^{n}}$. It is equivalent to show

$$
n_{0}=\left(p-p_{c}\right)^{-\frac{1}{2}+o(1)}
$$

where $n_{0}:=\inf \left\{n \geq 1: \mathbb{E}\left(X_{n}\right)>1\right\}$.

Coupling between the supercritical regime and the critical regime

- Define $\left(X_{0}, Y_{0}\right)$ such that $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{0}+p \delta_{\xi}$ with $p=p_{c}+\varepsilon$ such that $X_{0} \geq Y_{0}$ a.s. and $\mathbb{P}\left(X_{0}=Y_{0} \mid Y_{0}>0\right)=1$.
- Define $X(u), u \in \mathbb{T}$ as for $Y(u), u \in \mathbb{T}$.
- Let $N_{n}^{(0)}$ be the number of open paths $\left(x_{i}\right)_{0 \leq i \leq n}$ leading to e_{n} such that $Y\left(x_{0}\right)=0\left[\right.$ Below $\left.N_{4}^{(0)}=2\right]$.
- (Coupling inequality) For all $r \geq 0, n, k \geq 1, \ell \leq \varepsilon r / 2$,

Coupling between the supercritical regime and the critical regime

- Define $\left(X_{0}, Y_{0}\right)$ such that $X_{0} \stackrel{\text { law }}{=}(1-p) \delta_{0}+p \delta_{\xi}$ with $p=p_{c}+\varepsilon$ such that $X_{0} \geq Y_{0}$ a.s. and $\mathbb{P}\left(X_{0}=Y_{0} \mid Y_{0}>0\right)=1$.
- Define $X(u), u \in \mathbb{T}$ as for $Y(u), u \in \mathbb{T}$.
- Let $N_{n}^{(0)}$ be the number of open paths $\left(x_{i}\right)_{0 \leq i \leq n}$ leading to \mathfrak{e}_{n} such that $Y\left(x_{0}\right)=0\left[\right.$ Below $\left.N_{4}^{(0)}=2\right]$.

- (Coupling inequality) For all $r \geq 0, n, k \geq 1, \ell \leq \varepsilon r / 2$,

$$
\mathbb{E}\left(X_{n+k+\ell}\right) \geq 2^{\ell-1} \varepsilon \mathbb{E}\left(N_{n}^{(0)} 2^{Y_{n}} 1_{\left.\left\{N_{n}^{(0)} \geq r, Y_{n}=k\right)\right\}}\right) .
$$

Proof in the subcritical case : $x_{0} \stackrel{\text { law }}{=}(1-p) \delta_{0}+p \delta_{\xi}$ with $p=p_{c}-\varepsilon$.

(lower bound) To show :
If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $\varepsilon>0$ is small, then

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(X_{n} \geq 1\right) \geq-\varepsilon^{\frac{1}{2}+o(1)}
$$

Lemma
We have

$$
\mathbb{P}\left(X_{n} \geq 1\right) \geq \mathbb{E}\left[\left(\frac{p}{p_{c}}\right)^{N_{n}} 1_{\left\{Y_{n} \geq 1\right\}}\right] .
$$

Proof in the subcritical case : $x_{0} \stackrel{\text { law }}{=}(1-p) \delta_{0}+p \delta_{\xi}$ with $p=p_{c}-\varepsilon$.

(lower bound) To show :
If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $\varepsilon>0$ is small, then

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(X_{n} \geq 1\right) \geq-\varepsilon^{\frac{1}{2}+o(1)} .
$$

Lemma
We have

$$
\mathbb{P}\left(X_{n} \geq 1\right) \geq \mathbb{E}\left[\left(\frac{p}{p_{c}}\right)^{N_{n}} 1_{\left\{Y_{n} \geq 1\right\}}\right] .
$$

Remark
Conditioned on $\left\{Y_{n} \geq 1\right\}, N_{n} \approx n^{2}$.

Proof in the subcritical case : $x_{0} \stackrel{\text { law }}{=}(1-p) \delta_{0}+p \delta_{\xi}$ with $p=p_{c}-\varepsilon$.

(lower bound) To show :
If $\mathbb{E}\left(r^{X_{0}}\right)<\infty$ for some $r>2$ and $\varepsilon>0$ is small, then

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(X_{n} \geq 1\right) \geq-\varepsilon^{\frac{1}{2}+o(1)} .
$$

Lemma
We have

$$
\mathbb{P}\left(X_{n} \geq 1\right) \geq \mathbb{E}\left[\left(\frac{p}{p_{c}}\right)^{N_{n}} 1_{\left\{Y_{n} \geq 1\right\}}\right] .
$$

Remark
Conditioned on $\left\{Y_{n} \geq 1\right\}, N_{n} \approx n^{2}$.

Proof in the subcritical case : lower bound.

Proposition

We have

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(Y_{n} \geq \frac{n}{j}, N_{n} \leq j n\right) \geq-j^{-1+o(1)} .
$$

Consequence

and we choose $j=\left(p_{c}-p\right)^{-1 / 2+o(1)}$.

Proof in the subcritical case : lower bound.

Proposition

We have

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(Y_{n} \geq \frac{n}{j}, N_{n} \leq j n\right) \geq-j^{-1+o(1)}
$$

Consequence :

$$
\mathbb{P}\left(X_{n} \geq 1\right) \geq \mathbb{E}\left[\left(\frac{p}{p_{c}}\right)^{N_{n}} 1_{\left\{Y_{n} \geq 1, N_{n} \leq j n\right\}}\right] \geq\left(\frac{p}{p_{c}}\right)^{j n} e^{-j^{-1+o(1)} n}
$$

and we choose $j=\left(p_{c}-p\right)^{-1 / 2+o(1)}$.

Conjecture : Derrida and Shi (2020)

Let $x>0$. Conditionally on $Y_{n}=\lfloor x n\rfloor, \frac{N_{n}}{n^{2}}$ converges in law, furthermore, $\frac{1}{n} \mathbb{T}_{n}^{\text {red }}$ converges under the Gromov-Hausdorff metric to a random continuous tree \mathcal{T} [\mathcal{T} appeared in H ., Mallein and Pain (2020) as the limit of a continuous-time Derrida-Retaux model in the critical regime].

THANK YOU!

