[A Conference on "Branching Processes and Applications", Angers, May 22-26, 2023]

A Mini-Course on

Continuous-State Branching Processes

Zenghu Li

(Beijing Normal University)

0 Introduction

Let $\{\xi_{n,i} : n, i \ge 1\}$ be a family of i.i.d. random variables taking values in $\mathbb{N} := \{0, 1, ...\}$. Given the initial state $X(0) \in \mathbb{N}$, one can define a discrete-*state* (*space-time*) branching process

Given the initial state $X(0) \in \mathbb{N}$, one can define a discrete-state (space-time) branching proces $\{X(n) : n \ge 0\}$ by (Bienaymé, 1845; Galton–Watson, 1874)

$$X(n) = \sum_{i=1}^{X(n-1)} \xi_{n,i}, \quad n \ge 1.$$
(0.1)

• The one-step transition probabilities satisfy the branching property

$$Q(x+y,\cdot) = Q(x,\cdot) * Q(y,\cdot), \quad x,y \in \mathbb{N}.$$
(0.2)

- Consider a sequence of branching processes $\{X_k(n):n\geq 0\}, k\geq 1.$
- A continuous-state branching process $\{x(t) : t \ge 0\}$ arises as the limit (Feller '51)

$$x(t) = \lim_{k \to \infty} \frac{1}{k} X_k(\lfloor kt \rfloor), \qquad t \ge 0.$$
(0.3)

A continuous-state branching process $\{x(t) : t \ge 0\}$ is a Markov process in $\mathbb{R}_+ := [0, \infty)$ with transition semigroup $(Q_t)_{t>0}$ satisfying the branching property

$$Q_t(x+y,\cdot) = Q_t(x,\cdot) * Q_t(y,\cdot), \qquad x,y \ge 0. \tag{0.4}$$

This implies $\{Q_t(x,\cdot): x \ge 0\}$ is a convolution semigroup on $[0,\infty)$, so

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x, \mathrm{d}y) = e^{-xv_t(\lambda)}, \qquad \lambda, t, x \ge 0,$$
(0.5)

where $(v_t)_{t\geq 0}$ is the cumulant semigroup with representation

$$v_t(\lambda) = h_t \lambda + \int_0^\infty (1 - e^{-\lambda y}) l_t(\mathrm{d}y).$$
(0.6)

• Lecture I: Basic structures and construction of $(v_t)_{t>0}$.

Let Q_v be the law in a suitable path space of the process $\{x(t) : t \ge 0\}$ with x(0) = v. Then $(Q_v : v \ge 0)$ is a convolution semigroup.

• Lecture II: Lévy-Itô representation of the path-valued Lévy process.

Recall that a discrete-state branching process is defined from i.i.d. random variables $\{\xi_{n,i}\}$ by

$$X(n) = \sum_{i=1}^{X(n-1)} \xi_{n,i}.$$
(0.7)

It follows that

$$X(n) = X(n-1) + \sum_{i=1}^{X(n-1)} (\xi_{n,i}-1),$$

 $X(n) = X(0) + \sum_{k=1}^{n} \sum_{i=1}^{X(k-1)} (\xi_{k,i}-1).$

A continuous-state branching process $\{x(t) : t \ge 0\}$ solves (Bertoin–Le Gall '06; Dawson–Li '06/'12)

$$x(t) = x(0) + \int_0^t \int_0^{x(s-)} L(\mathrm{d}s, \mathrm{d}u), \qquad (0.8)$$

where L(ds, du) is a spectrally positive Lévy white noise on $(0, \infty)^2$.

• Lecture III: Existence and uniqueness of the solution to (0.8) and applications.

Sources of the materials

Mathematical Lectures from Peking University

Ying Jiao Editor

From Probability to Finance

Lecture Notes of BICMR Summer School on Financial Mathematics

Probability Theory and Stochastic Modelling 103

Zenghu Li

Measure-Valued Branching Markov Processes

Second Edition

Deringer

Jiao ('20, Chap. 1) and Li ('22)

Lecture I: The CB-semigroup

1 Branching and immigration structures

1.1 The branching property

A Markov transition semigroup $(Q_t)_{t\geq 0}$ on the state space $[0,\infty)$ is called a continuous-state branching semigroup (CB-semigroup) if it satisfies the branching property:

$$Q_t(x+y,\cdot) = Q_t(x,\cdot) * Q_t(y,\cdot), \quad t,x,y \ge 0, \tag{1.1}$$

where "*" denotes the convolution operation.

A set of self-maps $(v_t)_{t\geq 0}$ of $[0,\infty)$ is called a cumulant semigroup if

• (Lévy–Kthintchine representation) for $t \ge 0$ we have

$$v_t(\lambda) = h_t \lambda + \int_{(0,\infty)} (1 - e^{-\lambda y}) l_t(\mathrm{d}y), \quad \lambda \ge 0;$$
(1.2)

• (Semigroup property) for $t, r \ge 0$,

$$v_{r+t}(\lambda) = v_r \circ v_t(\lambda) = v_r(v_t(\lambda)), \quad \lambda \ge 0.$$
(1.3)

Theorem 1.1 There is a 1-1 correspondence between CB-semigroups $(Q_t)_{t\geq 0}$ and cumulant semigroups $(v_t)_{t\geq 0}$, which is given by

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x, \mathrm{d}y) = e^{-xv_t(\lambda)}, \quad \lambda, t, x \ge 0.$$
(1.4)

• A Markov process $\{X(t) : t \ge 0\}$ is called a continuous-state branching process (CB-process) if its transition semigroup is a CB-semigroup.

Theorem 1.2 The CB-semigroup $(Q_t)_{t\geq 0}$ given by (1.4) is a Feller semigroup if and only if $(v_t)_{t\geq 0}$ is a continuous cumulant semigroup, i.e. $t\mapsto v_t(\lambda)$ is continuous for every $\lambda\geq 0$.

Corollary 1.3 A CB-process with continuous cumulant semigroup has a realization as a (càdlàg) Hunt process.

Theorem 1.4 If $\{x_1(t) : t \ge 0\}$ and $\{x_2(t) : t \ge 0\}$ are two independent CB-processes with transition semigroup $(Q_t)_{t>0}$, then so is $\{x_1(t) + x_2(t) : t \ge 0\}$.

1.2 Structures of immigration

Suppose that $(Q_t)_{t\geq 0}$ is the CB-semigroup defined by (1.4) from a continuous cumulant semigroup $(v_t)_{t\geq 0}$. Let $(\gamma_t)_{t\geq 0}$ be a family of probability measures on $[0, \infty)$.

We call $(\gamma_t)_{t>0}$ a skew convolution semigroup (SC-semigroup) associated with $(Q_t)_{t>0}$ provided

$$\gamma_{r+t} = (\gamma_r Q_t) * \gamma_t, \qquad r, t \ge 0. \tag{1.5}$$

Theorem 1.5 The family of probability measures $(\gamma_t)_{t\geq 0}$ on $[0,\infty)$ is an SC-semigroup if and only if a Markov transition semigroup $(Q_t^{\gamma})_{t\geq 0}$ on $[0,\infty)$ is defined by

$$Q_t^{\gamma}(x,\cdot) = Q_t(x,\cdot) * \gamma_t, \qquad t, x \ge 0.$$
(1.6)

If $\{y(t) : t \ge 0\}$ is a Markov process with transition semigroup $(Q_t^{\gamma})_{t\ge 0}$ given by (1.6), we call it a continuous-state branching process with immigration (CBI-process) associated with $(Q_t)_{t\ge 0}$.

By (1.6), the population at time t ≥ 0 is made up of two parts; the native part generated by the mass x ≥ 0 has distribution Q_t(x, ·) and the immigration part has distribution γ_t.

On the skew convolution equation:

$$egin{array}{rcl} (0,r+t]&=&(0,r]&\cup&(r,r+t]\ \downarrow&&\downarrow&\downarrow\ \gamma_{r+t}&\gamma_{r}\stackrel{t}{\leadsto}\gamma_{r}Q_{t}&\gamma_{t} \end{array}$$

Theorem 1.6 The family of probability measures $(\gamma_t)_{t\geq 0}$ on $[0,\infty)$ is an SC-semigroup if and only if its Laplace transform has the representation

$$\int_{[0,\infty)} e^{-\lambda y} \gamma_t(\mathrm{d}y) = \exp\Big\{-\int_0^t \psi(v_s(\lambda))\mathrm{d}s\Big\}, \quad t, \lambda \ge 0,$$
(1.7)

where

$$\psi(\lambda) = \beta \lambda + \int_{(0,\infty)} \left(1 - e^{-\lambda z}\right) \nu(\mathrm{d}z).$$
(1.8)

• If $v_t(\lambda) \equiv \lambda$, then $(\gamma_t)_{t \ge 0}$ reduces to a classical convolution semigroup:

$$\int_{[0,\infty)} e^{-\lambda y} \gamma_t(\mathrm{d}y) = e^{-t\psi(\lambda)}, \qquad t, \lambda \ge 0.$$
(1.9)

Let $(Q_t^{\gamma})_{t\geq 0}$ be defined by (1.6) with the SC-semigroup $(\gamma_t)_{t\geq 0}$ given by (1.7). Then

$$\int_{[0,\infty)} e^{-\lambda y} Q_t^{\gamma}(x, \mathrm{d}y) = \exp\Big\{-xv_t(\lambda) - \int_0^t \psi(v_s(\lambda)) \mathrm{d}s\Big\}.$$
(1.10)

We call ψ the immigration mechanism of a CBI-process with transition semigroup $(Q_t^{\gamma})_{t>0}$.

Theorem 1.7 If $(\gamma_1(t))_{t\geq 0}$ and $(\gamma_2(t))_{t\geq 0}$ are two SC-semigroups associated with $(Q_t)_{t\geq 0}$, then so is $(\gamma_1(t) * \gamma_2(t))_{t\geq 0}$.

Theorem 1.8 Suppose that $\{y_1(t) : t \ge 0\}$ and $\{y_2(t) : t \ge 0\}$ are two independent CBIprocesses associated with $(Q_t)_{t\ge 0}$ having immigration mechanisms ψ_1 and ψ_2 , respectively. Then $\{y_1(t) + y_2(t) : t \ge 0\}$ is a CBI-process associated with $(Q_t)_{t\ge 0}$ having immigration mechanism $\psi := \psi_1 + \psi_2$.

2 Construction of CB-processes

2.1 Discrete-state branching processes

Let $\{p(j) : j \in \mathbb{N}\}$ be a probability distribution on the space of positive integers $\mathbb{N} := \{0, 1, 2, \ldots\}$. It is well-known that $\{p(j) : j \in \mathbb{N}\}$ is uniquely determined by its generating function

$$g(z):=\sum_{j=0}^\infty p(j)z^j, \qquad |z|\leq 1.$$

Let $\{\xi_{n,i} : n, i = 1, 2, ...\}$ be \mathbb{N} -valued i.i.d. random variables with distribution $\{p(j) : j \in \mathbb{N}\}$. Given a random variable $x(0) \in \mathbb{N}$ independent of $\{\xi_{n,i}\}$, we define successively

$$x(n) = \sum_{i=1}^{x(n-1)} \xi_{n,i}, \qquad n = 1, 2, \dots$$
(2.1)

For $i \in \mathbb{N}$ let $Q(i, \cdot) = p^{*i}(\cdot)$. Then $\{x(n) : n \ge 0\}$ is a Markov chain with transition matrix $Q = (Q(i, j) : i, j \in \mathbb{N})$.

It is easy to see that

$$\sum_{j=0}^{\infty} Q(i,j) z^{j} = \sum_{j=0}^{\infty} p^{*i}(j) z^{j} = g(z)^{i}, \quad i \in \mathbb{N}, |z| \le 1.$$
(2.2)

A Markov chain in \mathbb{N} with transition matrix defined by (2.2) is called a discrete-state branching process (DB-process) with branching distribution given by g.

For any $n \ge 1$ the *n*-step transition matrix of the DB-process is just the *n*-fold product matrix $Q^n = (Q^n(i,j): i, j \in \mathbb{N}).$

Proposition 2.1 For any $n \ge 1$ and $i \in \mathbb{N}$ we have

$$\sum_{j=0}^{\infty} Q^{n}(i,j) z^{j} = g^{\circ n}(z)^{i}, \qquad |z| \le 1,$$
(2.3)

where $g^{\circ n}$ is defined by $g^{\circ n}(z) = g \circ g^{\circ (n-1)}(z) = g(g^{\circ (n-1)}(z))$ successively with $g^{\circ 0}(z) = z$ by convention.

2.2 Rescaled DB-processes

Let $\{x_k(n) : n \ge 0\}$ be a DB-process with branching distribution given by the probability generating function g_k , where $k = 1, 2, \ldots$ Let $z_k(n) = k^{-1}x_k(n)$.

Then $\{z_k(n) : n \ge 0\}$ is a Markov chain with state space $E_k := \{0, k^{-1}, 2k^{-1}, \ldots\}$ and *n*-step transition probability $Q_k^n(x, dy)$ determined by

$$\int_{E_k} e^{-\lambda y} Q_k^n(x, \mathrm{d}y) = g_k^{\circ n} (e^{-\lambda/k})^{kx}, \qquad \lambda \ge 0.$$
(2.4)

Let $\gamma_k \to \infty$ increasingly as $k \to \infty$. Let $\lfloor \gamma_k t \rfloor$ denote the integer part of $\gamma_k t$.

Given $z_k(0) = x \in E_k$, for any $t \ge 0$ the random variable

$$z_k(\lfloor \gamma_k t
floor) = k^{-1} x_k(\lfloor \gamma_k t
floor)$$

has distribution $Q_k^{\lfloor \gamma_k t
floor}(x,\cdot)$ on E_k determined by

$$\int_{E_k} e^{-\lambda y} Q_k^{\lfloor \gamma_k t \rfloor}(x, \mathrm{d}y) = \exp\{-x v_k(t, \lambda)\},\tag{2.5}$$

where

$$v_k(t,\lambda) = -k \log g_k^{\circ \lfloor \gamma_k t \rfloor} (\mathrm{e}^{-\lambda/k}).$$
(2.6)

By (2.6), for $\gamma_k^{-1}(i-1) \leq t < \gamma_k^{-1} i$ we have

$$\begin{split} v_k(t,\lambda) &= v_k(0,\lambda) + \sum_{j=1}^{\lfloor \gamma_k t \rfloor} [v_k(\gamma_k^{-1}j,\lambda) - v_k(\gamma_k^{-1}(j-1),\lambda)] \\ &= \lambda - k \sum_{j=1}^{\lfloor \gamma_k t \rfloor} [\log g_k^{\circ j}(\mathrm{e}^{-\lambda/k}) - \log g_k^{\circ (j-1)}(\mathrm{e}^{-\lambda/k})] \\ &= \lambda - \gamma_k^{-1} \sum_{j=1}^{\lfloor \gamma_k t \rfloor} \phi_k(-k \log g_k^{\circ (j-1)}(\mathrm{e}^{-\lambda/k})) \\ &= \lambda - \gamma_k^{-1} \sum_{j=1}^{\lfloor \gamma_k t \rfloor} \phi_k(v_k(\gamma_k^{-1}(j-1),\lambda)) \\ &= \lambda - \int_0^{\gamma_k^{-1} \lfloor \gamma_k t \rfloor} \phi_k(v_k(s,\lambda)) \mathrm{d}s, \end{split}$$

(2.7)

$$\phi_k(\lambda) = k\gamma_k \log \left[g_k(\mathrm{e}^{-\lambda/k}) \mathrm{e}^{\lambda/k} \right].$$
(2.8)

2.3 The branching mechanism

A convex function ϕ on $[0,\infty)$ is called a branching mechanism if it has the representation

$$\phi(\lambda) = b\lambda + c\lambda^2 + \int_{(0,\infty)} \left(e^{-\lambda z} - 1 + \lambda z \right) m(\mathrm{d}z), \quad \lambda \ge 0,$$
(2.9)

where $c \ge 0$ and b are constants and $(z \wedge z^2)m(dz)$ is a finite measure on $(0, \infty)$.

Condition 2.2 The sequence $\{\phi_k\}$ is uniformly Lipschitz on [0, a] for every $a \ge 0$ and there is a function ϕ on $[0, \infty)$ so that $\phi_k(\lambda) \to \phi(\lambda)$ uniformly on [0, a] for every $a \ge 0$ as $k \to \infty$.

Proposition 2.3 If Condition 2.2 is satisfied, then ϕ is a branching mechanism with representation (2.9).

Proposition 2.4 For every branching mechanism ϕ given by (2.9), there is a sequence $\{\phi_k\}$ in the form of (2.8) satisfying Condition 2.2.

2.4 The CB-semigroup / process

Theorem 2.5 Suppose that Condition 2.2 holds. Then for every $a \ge 0$ we have $v_k(t, \lambda) \rightarrow$ some $v_t(\lambda)$ uniformly on $[0, a]^2$ as $k \rightarrow \infty$ and the limit function solves

$$v_t(\lambda) = \lambda - \int_0^t \phi(v_s(\lambda)) \mathrm{d}s, \qquad \lambda, t \ge 0.$$
 (2.10)

Theorem 2.6 Suppose that ϕ is a function given by (2.9). Then for any $\lambda \ge 0$ there is a unique positive solution $t \mapsto v_t(\lambda)$ to (2.10) and $(v_t)_{t>0}$ is a cumulant semigroup.

Corollary 2.7 Under the assumption of Theorem 2.6, there is a Feller CB-semigroup $(Q_t)_{t\geq 0}$ defined by

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x, \mathrm{d}y) = e^{-xv_t(\lambda)}, \quad \lambda, t, x \ge 0.$$
(2.11)

We say a CB-process has branching mechanism ϕ if its transition semigroup $(Q_t)_{t\geq 0}$ is defined by (2.11).

Let W denote the space of positive càdlàg paths on $[0, \infty)$ furnished with the Skorokhod topology; see, e.g., Ethier and Kurtz (1986).

Theorem 2.8 Suppose that Condition 2.2 holds. Let $\{x(t) : t \ge 0\}$ be a càdlàg CB-process with transition semigroup $(Q_t)_{t\ge 0}$ defined by (2.10) and (2.11). If $z_k(0)$ converges to x(0) in distribution, then $\{z_k(\lfloor \gamma_k t \rfloor) : t \ge 0\}$ converges to $\{x(t) : t \ge 0\}$ in distribution on W.

Observation: Propositions 2.3 and 2.4 indicate that the CB-processes give exactly all possible scaling limits of DB-processes.

Problems:

- Characterize the class of all possible scaling limits of discrete-state branching processes in i.i.d. random environments.
- Characterize the class of continuous-state branching processes in varying environments defined by

$$\int_{[0,\infty)} e^{-\lambda y} Q_{r,t}(x, \mathrm{d}y) = e^{-xv_{r,t}(\lambda)}, \quad \lambda, x \ge 0, t \ge r \ge 0;$$
(2.12)

see Bansaye and Simatos (2015, EJP) and Fang and L (2022, AOAP).

Lecture II: The Lévy–Itô representation

3 Some simple properties

3.1 Reviews

The branching mechanism ϕ of a CB-process is a convex function on $[0,\infty)$ given by

$$\phi(\lambda) = b\lambda + c\lambda^2 + \int_{(0,\infty)} \left(e^{-\lambda z} - 1 + \lambda z \right) m(\mathrm{d}z), \quad \lambda \ge 0,$$
(3.1)

where $c \ge 0$ and b are constants and $(z \land z^2)m(\mathrm{d}z)$ is a finite measure on $(0,\infty)$. We have

$$\phi'(\lambda) = b + 2c\lambda + \int_{(0,\infty)} z(1 - e^{-\lambda z})m(\mathrm{d}z), \qquad \lambda \ge 0.$$
 (3.2)

For this branching mechanism, there is a CB-semigroup $(Q_t)_{t>0}$ such that

$$\int_{[0,\infty)} e^{-\lambda y} Q_t(x, \mathrm{d}y) = e^{-xv_t(\lambda)}, \quad \lambda, t, x \ge 0,$$
(3.3)

where $t\mapsto v_t(\lambda)$ is the unique positive solution of

1

$$v_t(\lambda) = \lambda - \int_0^t \phi(v_s(\lambda)) \mathrm{d}s, \qquad \lambda, t \ge 0.$$
 (3.4)

The CB-process could be constructed for more general ϕ (including Neveu's $\phi(\lambda) \equiv \lambda \log \lambda$).

3.2 Forward and backward differential equations

From (3.4) we see that $t \mapsto v_t(\lambda)$ is first continuous and then continuously differentiable. Moreover, it is easy to see that

$$\left.rac{\partial}{\partial t}v_t(\lambda)
ight|_{t=0}=-\phi(\lambda),\qquad\lambda\geq 0.$$

By the semigroup property $v_{t+s} = v_s \circ v_t = v_t \circ v_s$, we get the backward differential equation:

$$\frac{\partial}{\partial t}v_t(\lambda) = -\phi(v_t(\lambda)), \qquad v_0(\lambda) = \lambda, \tag{3.5}$$

and forward differential equation:

$$\frac{\partial}{\partial t}v_t(\lambda) = -\phi(\lambda)\frac{\partial}{\partial\lambda}v_t(\lambda), \quad v_0(\lambda) = \lambda.$$
(3.6)

We can also rewrite (3.6) into its integral form:

$$v_t(\lambda) = \lambda - \int_0^t \phi(\lambda) \frac{\partial}{\partial \lambda} v_s(\lambda) \mathrm{d}s, \quad t \ge 0.$$
 (3.7)

3.3 The first moment

From (3.3) and (3.4) it follows that $\int_{[0,\infty)} yQ_t(x, dy) = xe^{-\phi'(0)t} = xe^{-bt}, \quad t \ge 0, x \ge 0. \quad (3.8)$

Proposition 3.1 If $\{x(t) : t \ge 0\}$ is a CB-process with branching mechanism ϕ , then $\{e^{bt}x(t) : t \ge 0\}$ is a positive martingale.

3.4 The spectrally positive Lévy process

The branching mechanism ϕ is the Laplace exponent of a spectrally positive Lévy process, which is connected with the CB-process by Lamperti's time changes; see Kyprianou (2014, Springer).

We have $(0 \cdot \infty = 0)$

$$\phi'(0)=b, \hspace{1em} \phi'(\infty)=b+2c\cdot\infty+\int_{(0,\infty)}zm(\mathrm{d} z).$$

The Lévy process has infinite variations if and only it $\phi'(\infty) = \infty$.

3.5 The extinction time

By Corollary 1.3, the CB-process has a Hunt process realization $X = (\Omega, \mathscr{F}, \mathscr{F}_t, x(t), \mathbf{Q}_x)$. Let $\tau_0 := \inf\{s \ge 0 : x(s) = 0\}$ denote the *extinction time*.

Theorem 3.2 For every $t \ge 0$ the limit $\bar{v}_t = \lim_{\lambda \to \infty} v_t(\lambda)$ exists in $(0, \infty]$. Moreover, the mapping $t \mapsto \bar{v}_t$ is decreasing and for any $t \ge 0$ and x > 0 we have

$$\mathbf{Q}_{x}\{\tau_{0} \leq t\} = \mathbf{Q}_{x}\{x(t) = 0\} = \exp\{-x\bar{v}_{t}\}.$$
(3.9)

Condition 3.3 (*Grey's condition*) There is some constant $\theta > 0$ so that

$$\phi(z)>0 ext{ for } z\geq heta ext{ and } \int_{ heta}^{\infty} \phi(z)^{-1} \mathrm{d} z <\infty.$$

Theorem 3.4 We have $\bar{v}_t < \infty$ for some and hence all t > 0 if and only if Condition 3.3 holds. In this case, $t \mapsto \bar{v}_t = l_t(0, \infty)$ is the unique solution to

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{v}_t = -\phi(\bar{v}_t), \qquad \bar{v}_{0+} = \infty.$$
(3.10)

3.6 The canonical entrance rule

The cumulant semigroup $(v_t)_{t>0}$ has the canonical Lévy–Kthintchine representation:

$$v_t(\lambda) = h_t \lambda + \int_{(0,\infty)} (1 - e^{-\lambda z}) l_t(\mathrm{d}z), \qquad t \ge 0, \lambda \ge 0, \tag{3.11}$$

Write $Q_t^{\circ}(x, \mathrm{d}z) = \mathbf{1}_{\{z>0\}}Q_t(x, \mathrm{d}z)$. Then $v_{r+t} = v_r \circ v_t$ implies, for all t, r > 0,

$$h_{r+t} = h_r h_t, \ l_{r+t}(\mathrm{d}z) = h_r l_t(\mathrm{d}z) + l_r Q_t^{\circ}(\mathrm{d}z),$$
 (3.12)

and so $l_{r+t} \leq l_r Q_t^{\circ}$. We call $(l_t)_{t>0}$ the canonical entrance rule.

Theorem 3.5 We have $h_t = 0$ for some and hence all t > 0 if and only if $\phi'(\infty) = \infty$. In this case, the family $(l_t)_{t>0}$ is an entrance law, i.e., $l_{r+t} = l_r Q_t^\circ$ for all t, r > 0.

• In the situation of Theorem 3.5, as $x \downarrow 0$,

$$\int_{(0,\infty)} (1 - \mathrm{e}^{-\lambda z}) x^{-1} Q_t^{\circ}(x, \mathrm{d} z) = x^{-1} (1 - \mathrm{e}^{-x v_t(\lambda)}) \uparrow v_t(\lambda) = \int_{(0,\infty)} (1 - \mathrm{e}^{-\lambda z}) l_t(\mathrm{d} z).$$

3.7 The space of paths

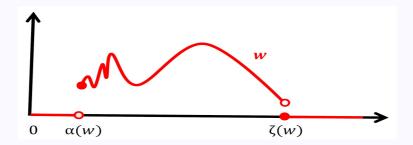
Let W be the space of positive càdlàg paths on $[0,\infty)$ furnished with the σ -algebras

$$\mathscr{W}=\sigma(\{w(s): 0\leq s<\infty\}), \hspace{0.2cm} \mathscr{W}_t=\sigma(\{w(s): 0\leq s\leq t\}), \hspace{0.2cm} t\geq 0.$$

For $w \in W$ let $\alpha(w) = \inf\{s \ge 0 : w(s) > 0\}$ and

$$\zeta(w)=\inf\{s>\alpha(w):w(s)\text{ or }w(s-)=0\}.$$

Let $\hat{W} = \{w \in W : w(t) = 0 \text{ for } t < \alpha(w) \text{ and } t \ge \zeta(w)\} \subset W.$



4 Canonical Kuznetsov measures

4.1 The canonical excursion law

Theorem 4.1 Suppose that $\phi'(\infty) = \infty$ and let $(l_t)_{t>0}$ be the canonical entrance law. Then there is a unique σ -finite measure N_0 on (W, \mathscr{W}) supported by

$$W_0:=\{w\in \hat{W}: lpha(w)=w(0)=0\}\subset \hat{W}$$

such that, for $0 < t_1 < t_2 < \cdots < t_n$ and $x_1, x_2, \dots, x_n > 0$,

$$\mathbf{V}_{0}(w(t_{1}) \in \mathrm{d}x_{1}, w(t_{2}) \in \mathrm{d}x_{2}, \dots, w(t_{n}) \in \mathrm{d}x_{n})$$

= $\mathbf{l}_{t_{1}}(\mathrm{d}x_{1})Q_{t_{2}-t_{1}}^{\circ}(x_{1}, \mathrm{d}x_{2})\cdots Q_{t_{n}-t_{n-1}}^{\circ}(x_{n-1}, \mathrm{d}x_{n}).$ (4.1)

- Roughly speaking, (4.1) means $\{w(t) : t \ge 0\}$ under N_0 is a CB-process.
- Let $(W, \mathscr{W}, \mathscr{W}_t, w(t), \boldsymbol{Q}_x)$ be the canonical càdlàg realization of the CB-process. Formally,

$$\boldsymbol{l}_{t} = \lim_{x \to 0} x^{-1} \boldsymbol{Q}_{t}^{\circ}(x, \cdot) \quad \Rightarrow \quad \boldsymbol{N}_{0} = \lim_{x \to 0} x^{-1} \boldsymbol{Q}_{x} \quad \Rightarrow \quad \operatorname{supp}(\boldsymbol{N}_{0}) \subset \boldsymbol{W}_{0}. \tag{4.2}$$

The rigorous proof of the above theorem depends on the following Proposition 4.2.

Proposition 4.2 Let $\phi'_0(\lambda) = \phi'(\lambda) - b$ for $\lambda \ge 0$, where ϕ' is given by (3.2). We can define a Feller transition semigroup $(Q^b_t)_{t\ge 0}$ on $[0,\infty)$ by

$$\int_{[0,\infty)} e^{-\lambda y} Q_t^b(x, \mathrm{d}y) = \exp\bigg\{-x v_t(\lambda) - \int_0^t \phi_0'(v_s(\lambda)) \mathrm{d}s\bigg\}.$$
(4.3)

Moreover, we have

$$Q_t^b(x, \mathrm{d}y) = \mathrm{e}^{bt} x^{-1} y Q_t(x, \mathrm{d}y), \quad x > 0$$
(4.4)

and

$$Q_t^b(0, \mathrm{d}y) = \mathrm{e}^{bt} [h_t \delta_0(\mathrm{d}y) + y l_t(\mathrm{d}y)]. \tag{4.5}$$

- The transition semigroup $(Q_t^b)_{t>0}$ defined by (4.3) is that of a special CBI-process.
- Let $(W, \mathscr{W}, \mathscr{W}_t, w(t), \boldsymbol{Q}_x^b)$ be the canonical càdlàg realization of the CBI-process. Then $w(T)\boldsymbol{N}_0(\mathrm{d}w) = \mathrm{e}^{-bT}\boldsymbol{Q}_0^b(\mathrm{d}w)$ on $\mathscr{W}_T = \sigma(\{w(s): 0 \le s \le T\}),$

which gives rigorously $supp(N_0) \subset W_0$.

(4.6)

4.2 The canonical Kuznetsov measure

Theorem 4.3 When $\delta := \phi'(\infty) < \infty$, we have c = 0 and, for $t \ge 0$ and $\lambda \ge 0$,

$$v_t(\lambda) = \mathrm{e}^{-\delta t} \lambda + \int_0^t \mathrm{e}^{-\delta s} \mathrm{d}s \int_{(0,\infty)} (1 - \mathrm{e}^{-zv_{t-s}(\lambda)}) m(\mathrm{d}z).$$
(4.7)

Consequently, the Lévy–Kthintchine formula (3.11) for $v_t(\lambda)$ holds with

$$h_t = e^{-\delta t}, \quad l_t = \int_0^t e^{-\delta s} m Q_{t-s}^\circ \mathrm{d}s, \quad t \ge 0.$$
(4.8)

Theorem 4.4 Suppose that $\delta := \phi'(\infty) < \infty$. Then there is a σ -finite measure N_1 carried by

$$W_1:=\{w\in \hat{W}: lpha(w)>0, w(lpha(w))>0\}\subset \hat{W}$$

such that, for any $t > r \ge 0$, $F \in b\mathscr{W}_r$ and $\lambda \ge 0$,

$$N_{1}[F(w)(1 - e^{-\lambda w(t)})] = N_{1}[F(w)(1 - e^{-v_{t-r}(\lambda)w(r)})] + F([0])[e^{-\delta r}v_{t-r}(\lambda) - e^{-\delta t}\lambda].$$
(4.9)

- The proof of Theorem 4.4 is based on the relations in (4.8).
- In Markov processes, N_1 is known as a Kuznetsov measure; see, e.g., Dellacherie et al. (1992).

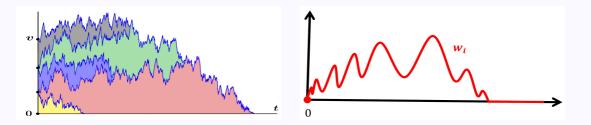
5 Structures of sample paths

5.1 Cluster representations of the CB-process

Theorem 5.1 Suppose that $\phi'(\infty) = \infty$. Let $v \ge 0$ and let $N(dw) = \sum_{i=1}^{\infty} \delta_{w_i}(dw)$ be a Poisson random measure on W with intensity $v \mathbf{N}_0(dw)$, where \mathbf{N}_0 is the excursion law (carried by $W_0 \subset \hat{W}$). Let $\mathbf{X}_0 = v$ and for t > 0 let

$$X_t = \int_W w(t)N(\mathrm{d}w) = \sum_{i=1}^\infty w_i(t).$$
(5.1)

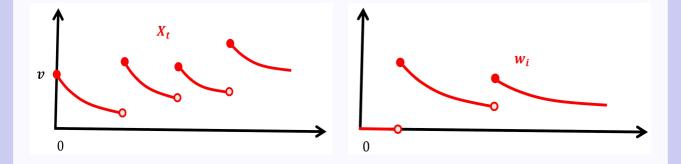
Then $\{X_t : t \ge 0\}$ is a realization of the CB-process.



Theorem 5.2 Suppose that $\delta := \phi'(\infty) < \infty$. Let $v \ge 0$ and let $N(dw) = \sum_{i=1}^{\infty} \delta_{w_i}(dw)$ be a Poisson random measure on W with intensity $v \mathbf{N}_1(dw)$, where \mathbf{N}_1 is the canonical Kuznetsov measure (carried by $W_1 \subset \hat{W}$). For any $t \ge 0$ let

$$X_{t} = v e^{-\delta t} + \int_{W} w(t) N(dw) = v e^{-\delta t} + \sum_{i=1}^{\infty} w_{i}(t).$$
 (5.2)

Then $\{X_t : t \ge 0\}$ is a realization of the CB-process.



5.2 Flow of CB-processes

Let $X = (W, \mathscr{W}, \mathscr{W}_t, w(t), \mathbf{Q}_x)$ be a canonical realization of the CB-process. By Theorem 1.4,

$$\boldsymbol{Q}_{v_1+v_2} = \boldsymbol{Q}_{v_1} * \boldsymbol{Q}_{v_2}, \quad v_1, v_2 \ge 0.$$
(5.3)

Then $(\mathbf{Q}_v)_{v\geq 0}$ is a convolution semigroup on the path space (W, \mathscr{W}) .

Proposition 5.3 Suppose that $\phi'(\infty) = \infty$. Let N(dw, du) be a Poisson random measure on $W \times (0, \infty)$ with intensity $N_0(dw)du$. For $v \ge 0$ let $X_0(v) = v$ and

$$X_t(v) = \int_W \int_0^v w(t) N(du, dw), \quad t > 0.$$
 (5.4)

Then $\{X_t(v) : t \ge 0\}$ is a realization of the CB-process.

Proposition 5.4 Suppose that $\delta := \phi'(\infty) < \infty$. Let N(dw, du) be a Poisson random measure on $W \times (0, \infty)$ with intensity $N_1(dw)du$. For $v, t \ge 0$ let

$$X_t(v) = v \mathrm{e}^{-\delta t} + \int_W \int_0^v w(t) N(\mathrm{d}w, \mathrm{d}u).$$
(5.5)

Then $\{X_t(v) : t \ge 0\}$ is a realization of the CB-process.

Let ρ be the metric on W defined by $(b = \phi'(0))$

$$\rho(w_1, w_2) = \sup_{s \ge 0} e^{bs} |w_1(s) - w_2(s)|, \quad w_1, w_2 \in W.$$
(5.6)

Theorem 5.5 There is a version of the random field $\{X_t(v) : v \ge 0, t \ge 0\}$ defined by (5.4) or (5.5) with the following properties:

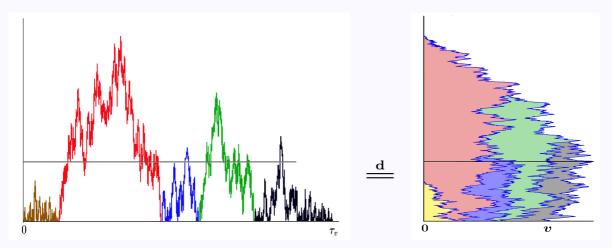
- (i) The path-valued process $\{X(v) : v \ge 0\}$ is increasing and ρ -càdlàg and has stationary and independent increments.
- (ii) For any $v_2 \ge v_1 \ge 0$ the difference $X(v_2) X(v_1) = \{X_t(v_2) X_t(v_2) : t \ge 0\}$ is a CB-process with transition semigroup $(Q_t)_{t\ge 0}$.

Remarks:

- The path-valued process {X(v) : v ≥ 0} is a Lévy process with state space (W, ℋ), and (5.4) and (5.5) give its Lévy–Itô representation in the cases φ'(∞) = ∞ and <∞, respectively.
- The random field $\{X_t(v) : v \ge 0, t \ge 0\}$ is a realization of the flow of subordinators introduced by Bertoin and Le Gall (2000, 2003, 2005, 2006).

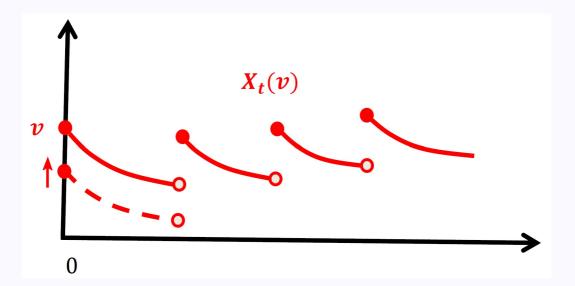
Observations:

• If $\delta := \phi'(\infty) = \infty$, then $v \mapsto X(v) = (X_t(v))_{t \ge 0}$ is pure jump process.



A pure jump increasing path-valued Lévy process $v \mapsto X(v) = (X_t(v))_{t \geq 0}$.

• If $\delta := \phi'(\infty) < \infty$, then $v \mapsto X(v) = (X_t(v))_{t \ge 0}$ has the continuous drift part $v \mapsto (v e^{-\delta t})_{t \ge 0}$.



Lecture III: Stochastic equations

6 Martingale problems for CBI-processes

6.1 Reviews

The branching and immigration mechanisms (ϕ, ϕ) are functions on $[0, \infty)$ given by

$$\phi(\lambda) = b\lambda + c\lambda^2 + \int_{(0,\infty)} \left(e^{-\lambda z} - 1 + \lambda z \right) m(\mathrm{d}z), \tag{6.1}$$

and

$$\psi(\lambda) = \beta \lambda + \int_{(0,\infty)} (1 - e^{-\lambda z}) \nu(dz), \quad \lambda \ge 0.$$
 (6.2)

A CBI-process has transition semigroup $(Q_t^\gamma)_{t\geq 0}$ such that

$$\int_{[0,\infty)} e^{-\lambda y} Q_t^{\gamma}(x, \mathrm{d}y) = \exp\Big\{-xv_t(\lambda) - \int_0^t \psi(v_s(\lambda))\mathrm{d}s\Big\}.$$
(6.3)

where $t \mapsto v_t(\lambda)$ is the unique positive solution of

$$\frac{\partial}{\partial t}v_t(\lambda) = -\phi(v_t(\lambda)), \qquad v_0(\lambda) = \lambda.$$
(6.4)

6.2 A forward integral equation

Proposition 6.1 For any $t \ge 0$ and $\lambda \ge 0$ we have

$$\int_{[0,\infty)} e^{-\lambda y} Q_t^{\gamma}(x, \mathrm{d}y) = e^{-x\lambda} + \int_0^t \mathrm{d}s \int_{[0,\infty)} [y\phi(\lambda) - \psi(\lambda)] e^{-y\lambda} Q_s^{\gamma}(x, \mathrm{d}y).$$
(6.5)

6.3 Equivalent martingale problems

Let $C^{1,2}([0,\infty)^2)$ be the set of bounded continuous real functions $(t,x) \mapsto G(t,x)$ on $[0,\infty)^2$ with bounded continuous derivatives up to the first order relative to $t \ge 0$ and up to the second order relative to $x \ge 0$.

Let $C^2[0,\infty)$ denote the set of bounded continuous real functions on $[0,\infty)$ with bounded continuous derivatives up to the second order. For $f \in C^2[0,\infty)$ define

$$Lf(x) = cxf''(x) + x \int_{(0,\infty)} \left[f(x+z) - f(x) - zf'(x) \right] m(dz) + (\beta - bx)f'(x) + \int_{(0,\infty)} \left[f(x+z) - f(x) \right] \nu(dz).$$
(6.6)

We shall identify *L* as the generator of the CBI-process.

Suppose that $(\Omega, \mathscr{G}, \mathscr{G}_t, \mathbf{P})$ is a filtered probability space satisfying the usual hypotheses and $\{y(t) : t \ge 0\}$ is a càdlàg process in $[0, \infty)$ that is adapted to $(\mathscr{G}_t)_{t\ge 0}$ and satisfies $\mathbf{P}[y(0)] < \infty$. Let us consider the following martingale problems:

(1) For every $T \ge 0$ and $\lambda \ge 0$,

$$\expigg\{-v_{T-t}(\lambda)y(t)-\int_0^{T-t}\psi(v_s(\lambda))\mathrm{d}sigg\},\qquad 0\leq t\leq T,$$

is a martingale.

(2) For every $\lambda \geq 0$,

$$H_t(\lambda):= \expigg\{-\lambda y(t) + \int_0^t [\psi(\lambda)-y(s)\phi(\lambda)] \mathrm{d}sigg\}, \hspace{1em} t \geq 0,$$

is a local martingale.

(3) The process $\{y(t) : t \ge 0\}$ a semi-martingale with no negative jumps and the optional random measure

$$N_0(\mathrm{d} s,\mathrm{d} z):=\sum_{s>0} \mathbb{1}_{\{\Delta y(s)
eq 0\}} \delta_{(s,\Delta y(s))}(\mathrm{d} s,\mathrm{d} z),$$

where $\Delta y(s) = y(s) - y(s-)$, has predictable compensator $\hat{N}_0(ds, dz) = ds\nu(dz) + y(s-)dsm(dz)$. Let $\tilde{N}_0(ds, dz) = N_0(ds, dz) - \hat{N}_0(ds, dz)$. We have

$$y(t) = y(0) + M^c(t) + M^d(t) - b \int_0^t y(s-) \mathrm{d}s + \psi'(0)t,$$

where $\{M^c(t): t \ge 0\}$ is a continuous local martingale with quadratic variation 2cy(t-)dtand

$$M^d(t) = \int_0^t \int_{(0,\infty)} z ilde N_0(\mathrm{d} s, \mathrm{d} z), \qquad t \geq 0,$$

is a purely discontinuous local martingale.

(4) For every $f\in C^2[0,\infty)$ we have

$$f(y(t)) = f(y(0)) + \int_0^t Lf(y(s)) ds + \text{local mart.}$$
(6.7)

(5) For any $G\in C^{1,2}([0,\infty)^2)$ we have

$$G(t, y(t)) = G(0, y(0)) + \int_0^t \left[G'_t(s, y(s)) + LG(s, y(s)) \right] ds + \text{local mart.}$$
(6.8)

where L acts on the function $x \mapsto G(s, x)$.

Theorem 6.2 The above properties (1), (2), (3), (4) and (5) are equivalent to each other. Those properties hold if and only if $\{(y(t), \mathscr{G}_t) : t \ge 0\}$ is a CBI-process with branching mechanism ϕ and immigration mechanism ψ .

Corollary 6.3 Let $\{(y(t), \mathscr{G}_t) : t \ge 0\}$ be a càdlàg realization of the CBI-process satisfying $P[y(0)] < \infty$. Then the above properties (3), (4) and (5) hold with the local martingales being martingales.

7 Stochastic equations for CBI-processes

In this and the next section, we understand

$$\int_a^b = \int_{(a,b]}$$
 and $\int_a^\infty = \int_{(a,\infty)}, \qquad b \ge a \ge 0.$

7.1 Weak solutions

Let $\{B(t)\}$ be a standard Brownian motion and $\{M(ds, dz, du)\}$ a Poisson time-space random measure on $(0, \infty)^3$ with intensity dsm(dz)du. Let $\{\eta(t)\}$ be an increasing Lévy process with $\eta(0) = 0$ and with Laplace exponent

$$\psi(\lambda) = -\log \mathbf{P} \exp\{-\lambda \eta(1)\}, \quad \lambda \ge 0.$$
(7.1)

We assume all those are independent of each other. Consider the stochastic integral equation

$$y(t) = y(0) + \int_{0}^{t} \sqrt{2cy(s-)} dB(s) - b \int_{0}^{t} y(s-) ds + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{y(s-)} z \tilde{M}(ds, dz, du) + \eta(t),$$
(7.2)

where $\tilde{M}(ds, dz, du) = M(ds, dz, du) - dsm(dz)du$ denotes the compensated measure.

We understand the forth term on the right-hand side of (7.2) as an integral over the random set $\{(s, z, u) : 0 < s \le t, 0 < z < \infty, 0 < u \le y(s-)\}$. Similar interpretations are given for other stochastic integral equations like (7.2).

By saying that $\{y(t) : t \ge 0\}$ is a weak solution to (7.2), we mean it is a positive càdlàg process defined on some probability space with the noises $\{B(t)\}$, $\{M(ds, dz, du)\}$ and $\{\eta(t)\}$ such that the equation holds almost surely for every $t \ge 0$.

We refer to Ikeda and Watanabe (1989) and Situ (2005) for the basic theory of stochastic equations.

Theorem 7.1 A positive càdlàg process $\{y(t) : t \ge 0\}$ is a CBI-process with branching and immigration mechanisms (ϕ, ψ) given respectively by (2.9) and (1.8) if and only if it is a weak solution to (7.2).

Let $\{M(ds, dz, du)\}$ and $\{\eta(s)\}$ be as in (7.2). Let $\{W(ds, du)\}$ be a Gaussian time-space white noise on $(0, \infty)^2$ with intensity 2cdsdu. We assume the noises are independent of each

other. Consider the stochastic integral equation

$$y(t) = y(0) + \int_{0}^{t} \int_{0}^{y(s-)} W(ds, du) - b \int_{0}^{t} y(s-) ds + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{y(s-)} z \tilde{M}(ds, dz, du) + \eta(t).$$
(7.3)

Theorem 7.2 A positive càdlàg process $\{y(t) : t \ge 0\}$ is a CBI-process with branching and immigration mechanisms (ϕ, ψ) given respectively by (2.9) and (1.8) if and only if it is a weak solution to (7.3).

From (7.2) or (7.3) we see that the immigration of the CBI-process $\{y(t)\}$ is represented by the increasing Lévy process $\{\eta(t)\}$. By the Lévy–Itô decomposition, there is a Poisson time-space random measure $\{N(ds, dz)\}$ with intensity $ds\nu(dz)$ such that

$$\eta(t)=eta t+\int_0^t\int_0^\infty zN(\mathrm{d} s,\mathrm{d} z),\qquad t\ge 0.$$

Then the immigration of $\{y(t)\}$ involves two parts: the continuous part determined by the drift coefficient β and the discontinuous part given by the Poisson random measure $\{N(ds, dz)\}$.

7.2 Strong solutions and comparisons

Theorem 7.3 For any initial value $y(0) = x \ge 0$, there are pathwise unique positive (strong) solutions to (7.2) and (7.3).

Theorem 7.4 Suppose that $\{y_1(t) : t \ge 0\}$ and $\{y_2(t) : t \ge 0\}$ are two positive solutions to (7.3) with $P\{y_1(0) \le y_2(0)\} = 1$. Then we have $P\{y_1(t) \le y_2(t) \text{ for all } t \ge 0\} = 1$.

A comparison properties of the solutions to (7.2) can also be established.

7.3 The time-space white Lévy noise

Let $\{L(ds, du)\}$ be the spectrally positive time-space (\mathscr{G}_t) -Lévy white noise on $(0, \infty)^2$ defined by

$$L(\mathrm{d}s,\mathrm{d}u) = W(\mathrm{d}s,\mathrm{d}u) - b\mathrm{d}s\mathrm{d}u + \int_{\{0 < z < \infty\}} z\tilde{M}(\mathrm{d}s,\mathrm{d}z,\mathrm{d}u). \tag{7.4}$$

We may rewrite (7.3) as

$$y(t) = y(0) + \int_0^t \int_0^{y(s-)} L(\mathrm{d}s, \mathrm{d}u) + \eta(t), \quad t \ge 0.$$
 (7.5)

7.4 Flow of CBI-processes

Let $\{L(ds, du)\}$ be the Lévy time-space white noise on $(0, \infty)^2$ defined by (7.4). Let $\{\eta(t)\}$ be an increasing Lévy process with $\eta(0) = 0$ and with Laplace exponent given by (7.1). We assume the noises are independent of each other.

By Theorem 7.3, for each $v \ge 0$ there is a pathwise unique solution $\{Y_t(v) : t \ge 0\}$ to

$$Y_t(v) = v + \int_0^t \int_0^{Y_{s-}(v)} L(\mathrm{d}s, \mathrm{d}u) + \eta(t).$$
(7.6)

Recall that W denotes the space of positive càdlàg paths on $[0,\infty)$. Define the metric ρ by

$$\rho(w_1, w_2) = \sup_{s \ge 0} e^{bs} |w_1(s) - w_2(s)|, \quad w_1, w_2 \in W.$$
(7.7)

Theorem 7.5 There is a version of the random field $\{Y_t(v) : v \ge 0, t \ge 0\}$ defined by (7.6) with the following properties:

- The path-valued process $\{Y(v) : v \ge 0\}$ is increasing and ρ -càdlàg and has stationary and independent increments.
- For any $v_2 \ge v_1 \ge 0$ the difference $Y(v_2) Y(v_1) = \{Y_t(v_2) Y_t(v_2) : t \ge 0\}$ is a CB-process with transition semigroup $(Q_t)_{t\ge 0}$.

By Theorem 7.5, the path-valued process $\{Y(v) : v \ge 0\}$ is a Lévy process with state space (W, \mathscr{W}) . The initial state of $\{Y(v) : v \ge 0\}$ is the CBI-process $Y(0) = \{Y_t(0) : t \ge 0\}$.

7.5 Stable Lévy noises

Let $c, q \ge 0, b \in \mathbb{R}$ and $1 < \alpha < 2$ be given constants. Let $\{B(t)\}$ be a standard Brownian motion. Let $\{z(t)\}$ be a spectrally positive α -stable Lévy process with Lévy measure

$$\gamma(\mathrm{d} z) := (\alpha - 1)\Gamma(2 - \alpha)^{-1} z^{-1 - \alpha} \mathrm{d} z, \qquad z > 0$$

and $\{\eta(t)\}\$ an increasing Lévy process with $\eta(0) = 0$ and with Laplace exponent ψ . We assume the noises are independent of each other. Consider the stochastic differential equation

$$dy(t) = \sqrt{2cy(t-)}dB(t) + \sqrt[\alpha]{\alpha qy(t-)}dz(t) - by(t-)dt + d\eta(t),$$
(7.8)

Theorem 7.6 A positive càdlàg process $\{y(t) : t \ge 0\}$ is a CBI-process with branching mechanism $\phi(\lambda) = b\lambda + c\lambda^2 + q\lambda^{\alpha}$ and immigration mechanism ψ given by (1.8) if and only if it is a weak solution to (7.8).

Theorem 7.7 For any initial value $y(0) = x \ge 0$, there is a pathwise unique positive strong solution to (7.8).

7.6 Examples

Suppose that $\{\xi_{n,i} : n, i = 1, 2, ...\}$ and $\{\eta_n : n = 1, 2, ...\}$ are two independent families of \mathbb{N} -valued i.i.d. random variables. Given the initial state $Y(0) \in \mathbb{N}$ independent of $\{\xi_{n,i}\}$ and

 $\{\eta_n\}$, we can define a discrete-state branching process with immigration by

$$Y(n) = \sum_{i=1}^{Y(n-1)} \xi_{n,i} + \eta_n, \qquad n \ge 1.$$
(7.9)

Example 7.8 The equation (7.3) can be thought as a continuous time-space counterpart of the definition (7.9) of the DBI-process. In fact, assuming $\mu = \mathbf{E}(\xi_{1,1}) < \infty$, we have

$$Y(n) = Y(n-1) + \sum_{i=1}^{Y(n-1)} (\xi_{n,i} - \mu) - (1-\mu)Y(n-1) + \eta_n.$$
(7.10)

It follows that

$$Y(n) = Y(0) + \sum_{k=1}^{n} \sum_{i=1}^{Y(k-1)} (\xi_{k,i} - \mu) - (1 - \mu) \sum_{k=1}^{n} Y(k-1) + \sum_{k=1}^{n} \eta_k.$$
(7.11)

The exact continuous time-space counterpart of (7.11) would be the stochastic integral equation

$$y(t) = y(0) + \int_0^t \int_0^\infty \int_0^{y(s-)} \xi \tilde{M}(\mathrm{d}s, \mathrm{d}\xi, \mathrm{d}u) - \int_0^t by(s-)\mathrm{d}s + \eta(t), \tag{7.12}$$

which is a typical special form of (7.3); see Bertoin and Le Gall (2006) and Dawson and Li (2006).

Example 7.9 The stochastic differential equation (7.8) captures the structure of the CBI-process in a typical special case. Let $1 < \alpha \leq 2$. Under the condition $\mu := \mathbf{E}(\xi_{1,1}) < \infty$, we have

$$Y(n) - Y(n-1) = \sqrt[\alpha]{Y(n-1)} \sum_{i=1}^{Y(n-1)} \frac{\xi_{n,i} - \mu}{\sqrt[\alpha]{Y(n-1)}} - (1-\mu)Y(n-1) + \eta_n.$$

A continuous time-state counterpart of the above equation would be

$$dy(t) = \sqrt[\alpha]{\alpha qy(t-)} dz(t) - by(t) dt + \beta dt, \qquad t \ge 0,$$
(7.13)

where $\{z(t) : t \ge 0\}$ is a standard Brownian motion if $\alpha = 2$ and a spectrally positive α -stable Lévy process. This is a typical special form of (7.8); see Fu and Li (2010).

Example 7.10 When $\alpha = 2$ and $\beta = 0$, the solution to (7.13) is a diffusion process and known as Feller's branching diffusion. This process was first studied by Feller (1951).

- 8 Recent topics and applications
- 8.1 Distributional properties of jumps

Let $\{x(t): t \geq 0\}$ be a CB-process. For $A \in \mathscr{B}(0,\infty)$ let

$$egin{aligned} x_A(t) &= ext{Card}\{s \in (0,t]: x(s) - x(s-) \in A\}, \ & au_A &= \inf\{s > 0: x(s) - x(s-) \in A\}, \ &M(t) &= \max\{x(s) - x(s-): s \in (0,t]\}. \end{aligned}$$

Characterizations of the distributions of those random variables can be derived easily from the stochastic equations, say,

$$egin{aligned} x(t) &= x(0) + \int_0^t \int_0^\infty \int_0^{x(s-)} z ilde{M}(\mathrm{d} s, \mathrm{d} z, \mathrm{d} u), \ x_A(t) &= 0 + \int_0^t \int_A \int_0^{y(s-)} M(\mathrm{d} s, \mathrm{d} z, \mathrm{d} u). \end{aligned}$$

The equations show that $\{(x(t), x_A(t)) : t \ge 0\}$ is a two-dimensional CB-process.

8.2 Variation of the transition probabilities

Let $x \ge y \ge 0$ and let $\{x(t) : t \ge 0\}$ and $y(t) : t \ge 0\}$ be CBI-processes defined by

$$egin{aligned} x(t) &= x + \int_0^t \int_0^{x(s-)} L(\mathrm{d} s, \mathrm{d} u) + \eta(t), \ y(t) &= y + \int_0^t \int_0^{x(s-)} L(\mathrm{d} s, \mathrm{d} u) + \eta(t). \end{aligned}$$

Then $\{\xi(t):=x(t)-y(t):t\geq 0\}$ is a CB-process since

$$\xi(t)=x-y+\int_0^t\int_0^{\xi(s-)}L(\mathrm{d} s, {oldsymbol{x}}(s-)+\mathrm{d} u).$$

This leads to the useful estimate for the variation of the transition probabilities:

$$\begin{split} \|Q_t(x,\cdot) - Q_t(y,\cdot)\|_{\text{var}} &= \sup_{\|f\| \le 1} \left| \int_{[0,\infty)} f(z) Q_t(x, \mathrm{d} z) - \int_{[0,\infty)} f(z) Q_t(y, \mathrm{d} z) \right| \\ &= \sup_{\|f\| \le 1} \left| \mathbf{E}[f((x(t))] - \mathbf{E}[f((y(t))]] \right| \\ &\leq \sup_{\|f\| \le 1} \mathbf{E}[\left| f((x(t)) - f((y(t))) \right|] \le 2\mathbf{P}(\xi(t) \neq 0). \end{split}$$

- 8.3 Multi-dimensional CB-processes
- 8.4 Inhomogeneous CB-processes
- 8.5 Loewner theory for Bernstein functions
- 8.6 CBI-processes with competition
- 8.7 CB-processes in Lévy environments
- 8.8 General random environments

