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0 Introduction

Let {&n,s : m,¢ > 1} be a family of i.i.d. random variables taking values in N := {0,1,... }.

Given the initial state X (0) € N, one can define a discrete-state (space-time) branching process
{X(n) : n > 0} by (Bienaymée, 1845; Galton—Watson, 1874)

X(n—1)
X(n)= )  éni n>1 (0.1)
=1

e The one-step transition probabilities satisfy the branching property
Q(m'i'ya) = Q(iE,) *Q(y7')7 z,y € N. 0.2)
e Consider a sequence of branching processes { Xx(n) : n > 0}, k > 1.

e A continuous-state branching process {x(t) : t > 0} arises as the limit (Feller '51)

x(t) = Jim %xk(uct D, t>o. 0.3)



A continuous-state branching process {z(t) : ¢ > 0} is a Markov process in Ry := [0, co) with
transition semigroup (Q+¢):>o satisfying the branching property

Qe(r+y,) = Qu(x,) * Que(y,:), z,y>0. (0.4)
This implies {Q+(x,-) : « > 0} is a convolution semigroup on [0, c©), SO
/[0 )e_AyQt(cc, dy) = e~ vt(N) A t,xz >0, (0.5)
where (v¢)¢>o is the CL’JmuIant semigroup with representation

w) =hx+ [ (1 e )l (dy). 0.6)

e Lecture I: Basic structures and construction of (v¢)¢>o-

Let Q,, be the law in a suitable path space of the process {x(t) : ¢ > 0} with £(0) = v. Then
(Qy : v > 0) is a convolution semigroup.

e Lecture II: Lévy-1td representation of the path-valued Lévy process.




Recall that a discrete-state branching process is defined from i.i.d. random variables {&,,,; } by

X(n—1)
X(n)= ) &n (0.7)
i=1
It follows that
X(n—1)
X(’I’L) = X(n_1)+ Z (En,i_l)v
=1
n X(k—1)

X(n) = X0+ > > (fri—1).
k=1 11=1
A continuous-state branching process {x(t) : t > 0} solves (Bertoin—Le Gall '06; Dawson—Li
'06/'12)

t px(s—)
z(t) = ac(O)—|—/0 /0 L(ds,du), (0.8)

where L(ds, du) is a spectrally positive Lévy white noise on (0, co)?.

e Lecture lll: Existence and uniqueness of the solution to (0.8) and applications.
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Lecture I: The CB-semigroup



1 Branching and immigration structures

1.1 The branching property

A Markov transition semigroup (Q:);>o on the state space [0, co) is called a continuous-state
branching semigroup (CB-semigroup) if it satisfies the branching property:

Qt(w+y$°) :Qt(ma')*Qt(y9')a t,x,y Z 0, (11)
where “x” denotes the convolution operation.

A set of self-maps (v¢)¢>0 Of [0, c0) is called a cumulant semigroup if

e (Lévy—Kthintchine representation) for ¢ > 0 we have

ve(A) = he + o )(1 —e M)l (dy), X > 0; (1.2)

e (Semigroup property) for t,r > 0,

Vpgt(A) = vp 0 Ve (A) = vp(ve(N)), A >0. (1.3)



Theorem 1.1 There is a 1-1 correspondence between CB-semigroups (Qt):>o and cumulant
semigroups (vt)¢>o, Which is given by

/ e_)‘yQt(m,dy) = e_m’to‘), A t,x > 0. (1.4)
[0700)

e A Markov process {X (t) : t > 0} is called a continuous-state branching process (CB-
process) if its transition semigroup is a CB-semigroup.

Theorem 1.2 The CB-semigroup (Qt):>o0 given by (1.4) is a Feller semigroup if and only if
(vt)e>0 s @ continuous cumulant semigroup, i.e. t — v¢(\) is continuous for every A > 0.

Corollary 1.3 A CB-process with continuous cumulant semigroup has a realization as a (cadlag)
Hunt process.

Theorem 1.4 If {z1(t) : t > 0} and {x2(t) : t > 0} are two independent CB-processes with
transition semigroup (Q¢)¢>o, then so is {z1(t) + x2(t) : t > 0}.



1.2 Structures of immigration

Suppose that (Q¢)¢>0 is the CB-semigroup defined by (1.4) from a continuous cumulant semi-
group (vt)¢>o- Let (v¢)¢>0 be a family of probability measures on [0, co).

We call (v¢)+>0 a skew convolution semigroup (SC-semigroup) associated with (Q);>o provided

Yr4+t = ('Yer) * Yt r,t Z 0. (15)

Theorem 1.5 The family of probability measures (v¢)¢>0 on [0, c0) is an SC-semigroup if and
only if a Markov transition semigroup (QY )¢>o on [0, co) is defined by

Q(z,') = Qe(z,) x vy  t,x > 0. (1.6)

If {y(¢) : t > 0} is a Markov process with transition semigroup (Q;):>0 given by (1.6), we call
it a continuous-state branching process with immigration (CBI-process) associated with (Q¢):>o-

e By (1.6), the population at time ¢ > 0 is made up of two parts; the native part generated by the
mass x > 0 has distribution Q:(x, -) and the immigration part has distribution ~;.



On the skew convolution equation:

O, »+t] = (0,7] U (r,r+t¢
L 45 4
Yr+t Tr “i ¥r Q1 Yt

Theorem 1.6 The family of probability measures (v¢)¢>0 on [0, c0) is an SC-semigroup if and
only if its Laplace transform has the representation

/[O’oo) e My, (dy) = exp{ _ /Ot d)(vs()\))dS}, t,A>0, 1.7)

where

PY(A) = B+ (1 — e **)r(dz). (1.8)

(0,00)
o If v(A) = A, then (v:):>0 reduces to a classical convolution semigroup:

[ ey =e ™, tazo. (1.9)
[0,00)



Let (Q7)¢>0 be defined by (1.6) with the SC-semigroup (v¢)¢>0 given by (1.7). Then

t
/ e MQY (x,dy) = exp{ — xve(A) — / 1/)(vs()\))ds}. (1.10)
[0,00) 0
We call 4 the immigration mechanism of a CBI-process with transition semigroup (Q7 )¢>o-

Theorem 1.7 If (v1(t))¢>0 and (v2(t))¢>o0 are two SC-semigroups associated with (Q¢)¢>o,
then so is (v1(t) * v2(t))¢>o-

Theorem 1.8 Suppose that {y1(t) : t > 0} and {y2(t) : t > 0} are two independent CBI-
processes associated with (Qt)>o having immigration mechanisms 11 and 2, respectively.
Then {y1(t) + y2(t) : t > 0} is a CBI-process associated with (Qt):>¢ having immigration
mechanism 1 := 11 + 2.



2 Construction of CB-processes

2.1 Discrete-state branching processes

Let {p(y) : 7 € N} be a probability distribution on the space of positive integers N := {0, 1, 2,...}.
It is well-known that {p(j) : 7 € N} is uniquely determined by its generating function

9(2):= Y p()z, |z <1
j=0

Let {£n,i : n,4 = 1,2,...} be N-valued i.i.d. random variables with distribution {p(j) : 7 € N}.
Given a random variable (0) € N independent of {£,,,;}, we define successively

z(n—1)

z(n) = Z ool n=12,.... 2.1)
1=1

Fori € Nlet Q(i,-) = p**(-). Then {z(n) : n > 0} is a Markov chain with transition matrix
Q = (Q(i,7) : 4,5 €N).



It is easy to see that

> Q,5) =) p*(H)F =g(2)" ieN|z| <1 2.2)
7=0 7=0

A Markov chain in N with transition matrix defined by (2.2) is called a discrete-state branching
process (DB-process) with branching distribution given by g.

For any n > 1 the n-step transition matrix of the DB-process is just the n-fold product matrix
Q" = (Qn(Z’J) 11,7 € N)
Proposition 2.1 Foranyn > 1 andi € N we have
> Q4,4)2 =g¢°"(2),, |2 <1, (2.3)
§=0

where g°™ is defined by g°™(z) = g o g°("~V(2) = g(g°™~Y(z)) successively with g°°(z) =
z by convention.



2.2 Rescaled DB-processes

Let {xr(n) : n > 0} be a DB-process with branching distribution given by the probability gener-
ating function g, where k = 1,2,.... Let zx(n) = k~lzx(n).

Then {zx(n) : n > 0} is a Markov chain with state space Ey := {0,k~1,2k—1,...} and
n-step transition probability Q7 (x, dy) determined by

| eap@ ay) = gine Y, Ao @4
Ey,

Let v, — oo increasingly as k — oo. Let |~xt] denote the integer part of yxt.

Given z,(0) = = € Eg, for any t > 0 the random variable

zi(lmet]) = k™ e (L et])

has distribution QE’“” (z,-) on Ej determined by

/ e QL (2, dy) = exp{—avi(t, \)}, (2.5)
Ey,



where

vk (t,\) = —klogg, L7et] (e k), (2.6)

By (2.6), for~; ' (i — 1) < t <~ 'i we have

[Vet]
ve(t,A) = ve(0,A) + > [vk(vg "5, A) — v 1 — 1), A)]
j=1
[viet] ] ]
= A—k Y [loggy(e™*) —log gy~ (e *)]
j=1
lvet] -
= A—7. " Y dr(—kloggpiY (e"k))
j=1
lvet]
=A=' Y dr(ve(vg (G —1),X))

i=1

Y Yet]
= A- /0 B1(vk (s, \))ds, 2.7)



where

Pr(N) = ki log [gr(e™>/*)e k], (2.8)

2.3 The branching mechanism

A convex function ¢ on [0, co) is called a branching mechanism if it has the representation

d(A) = bA + A% + (e™** — 1+ Az)m(dz), X >0, (2.9)
(0,00)

where ¢ > 0 and b are constants and (z A 22)m(dz) is a finite measure on (0, co).

Condition 2.2 The sequence {¢} is uniformly Lipschitz on [0, a] for every a > 0 and there is
a function ¢ on [0, oo) so that ¢pr(X) — ¢(X) uniformly on [0, a] for everya > 0 as k — oc.

Proposition 2.3 /f Condition 2.2 is satisfied, then ¢ is a branching mechanism with representa-
tion (2.9).

Proposition 2.4 For every branching mechanism ¢ given by (2.9), there is a sequence { ¢y} in
the form of (2.8) satisfying Condition 2.2.



2.4 The CB-semigroup / process

Theorem 2.5 Suppose that Condition 2.2 holds. Then for every a > 0 we have vg(t,\) —
some v () uniformly on [0, a)? as k — oo and the limit function solves

ve(A) = A — /Ot d(vs(A))ds, At > 0. (2.10)

Theorem 2.6 Suppose that ¢ is a function given by (2.9). Then for any X > 0 there is a unique
positive solutiont — v¢(X) to (2.10) and (v¢)¢>0 is @ cumulant semigroup.

Corollary 2.7 Under the assumption of Theorem 2.6, there is a Feller CB-semigroup (Q¢)¢>0
defined by

/ e~ MQy(z,dy) = e =) X t,z > 0. 2.11)
[0,00)

We say a CB-process has branching mechanism ¢ if its transition semigroup (Q¢)¢>0 is defined
by (2.11).



Let W denote the space of positive cadlag paths on [0, oo) furnished with the Skorokhod topolo-
gy; see, e.g., Ethier and Kurtz (1986).

Theorem 2.8 Suppose that Condition 2.2 holds. Let {x(t) : t > 0} be a cadlag CB-process
with transition semigroup (Q¢):>o defined by (2.10) and (2.11). If zx(0) converges to x(0) in
distribution, then {zr(|v&t]) : t > 0} converges to {x(t) : t > 0} in distribution on W'.

Observation: Propositions 2.3 and 2.4 indicate that the CB-processes give exactly all possible
scaling limits of DB-processes.

Problems:

e Characterize the class of all possible scaling limits of discrete-state branching processes in i.i.d.
random environments.

e Characterize the class of continuous-state branching processes in varying environments defined by
/ e MQi(z,dy) = e ™M, X,z >0,t>r > 0; 2.12)
[0,00)

see Bansaye and Simatos (2015, EJP) and Fang and L (2022, AOAP).



Lecture Il: The Lévy-It6 representation



3 Some simple properties

3.1 Reviews

The branching mechanism ¢ of a CB-process is a convex function on [0, co) given by
d(A) = b + A2 + (e — 14 Az)m(dz), >0,
(0,00)

where ¢ > 0 and b are constants and (z A z2)m(dz) is a finite measure on (0, cc). We have

@' (A) = b+ 2eX + z(1—e*)m(dz), Ax>o0.

(0,00)
For this branching mechanism, there is a CB-semigroup (Q:):>o such that
/ e MQy(z,dy) = N, Atz >0,
[0,00)
where t — v:(\) is the unique positive solution of

ve(A) = A — /t #(vs(A))ds, At 2> 0.

The CB-process could be constructed for more general ¢ (including Neveu's ¢(A) = Alog A).

(3.1)

(3.2)

(3.3)

(3.4)



3.2 Forward and backward differential equations

From (3.4) we see that ¢t — v () is first continuous and then continuously differentiable. More-
over, it is easy to see that

o
avt()‘) I = —d(N), A2>0.

By the semigroup property v;+s = vs 0 vy = v 0 vs, We get the backward differential equation:

o
avt()\) = —¢(ve(A),  vo(A) = A, (3.5)
and forward differential equation:
o A) = A g A A)=A 3.6
avt( ) = —&( )avt( )s vo(A) = A (3.6)

We can also rewrite (3.6) into its integral form:

t
ve(A) = A — /0 q&(A)aa)‘vs()\)ds, t> 0. 3.7)



3.3 The first moment

From (3.3) and (3.4) it follows that

/ yQi(z,dy) = e~ Ot = ze=,  t >0,z >0. (3.8)
[0,00)

Proposition 3.1 /f{x(t) : t > 0} is a CB-process with branching mechanism ¢, then {ebtx(t) :
t > 0} is a positive martingale.

3.4 The spectrally positive Lévy process

The branching mechanism ¢ is the Laplace exponent of a spectrally positive Lévy process, which
is connected with the CB-process by Lamperti’s time changes; see Kyprianou (2014, Springer).
We have (0 - co = 0)

¢'(0) =b, ¢'(c0) =b+2c- o0+ zm(dz).
(0,00)

The Lévy process has infinite variations if and only it ¢’ (oc0) = oo.



3.5 The extinction time

By Corollary 1.3, the CB-process has a Hunt process realization X = (2, %, %, (t), Q). Let
7o := inf{s > 0 : x(s) = 0} denote the extinction time.

Theorem 3.2 For every t > 0 the limit vy = limy_,oc v¢(A) exists in (0,00]. Moreover, the
mapping t — vy is decreasing and for anyt > 0 and x > 0 we have

Q.{r0 < t} = Qu{a(t) = 0} = exp{—a?,}. (3.9)

Condition 3.3 (Grey’s condition) There is some constant & > 0 so that

¢(z) > 0forz > 6 and /oo #(z)"ldz < co.
0

Theorem 3.4 We have v, < oo for some and hence all t > 0 if and only if Condition 3.3 holds.
In this case, t — vy = 14(0, 00) is the unique solution to

o= —p(3),  Tos = (3.10
dtvt_ D (0e), Vg4 = oo0. .



3.6 The canonical entrance rule
The cumulant semigroup (v¢).>¢ has the canonical Lévy—Kthintchine representation:

ve(A) = hgd + (1 — e )l (dz), t>0,\A>0, (3.11)

(0700)
Write Q7 (z,dz) = 1{.50}Q¢(x,dz). Then v, = v, o vy implies, for all t,» > 0,
hryt = hphey loyi(dz) = hely(dz) + 1.QF (dz), (3.12)

andso l,4+¢ < 1,.Q7. We call (I¢)¢>0 the canonical entrance rule.

Theorem 3.5 We have hy = 0 for some and hence all t > 0 if and only if ¢’ (o) = oo. In this
case, the family (1;)¢>o is an entrance law, i.e., l,1; = 1,.Q3 forallt,» > 0.

e In the situation of Theorem 3.5, as « | 0,

/ (1—e)2~1Q%(z,dz) = =1 (1 — e~ M) Py, (A) = / (1 = e=*%)1,(d2).
(0,00) ( )

OO0



3.7 The space of paths

Let W be the space of positive cadlag paths on [0, co) furnished with the o-algebras

W =o({w(s) : 0 < s < oc}), #=c({ws):0<s<t}), t>0.

Forw € W let a(w) = inf{s > 0 : w(s) > 0} and

((w) = inf{s > a(w) : w(s) or w(s—) = 0}.

LetW = {w € W : w(t) =0fort < a(w) and t > ¢(w)} C W.

0 a(w) c(w)



4 Canonical Kuznetsov measures

4.1 The canonical excursion law

Theorem 4.1 Suppose that ¢’ (c0) = oo and let (1;)¢+~0 be the canonical entrance law. Then
there is a unique o -finite measure Ny on (W, #") supported by

Wy :i={w € W : a(w) =w(0) =0} C W
suchthat, for0 < t;1 <ty < --- <ty andxy,x2,...,x, > 0,
No(w(t1) € dzq, w(t2) € dxa, ..., w(t,) € dz,)
= lt, (dz1)Qy, _4, (z1,dT2) - - - an_tn_l(mn_l, dz,,). 4.1)

e Roughly speaking, (4.1) means {w(t) : ¢ > 0} under Ny is a CB-process.
o Let (W, 7, #;,w(t), Q) be the canonical cadlag realization of the CB-process. Formally,
l, = iii%m—ng(m,-) = Ny = imm—lam = supp(No) C Wp. (4.2)

e The rigorous proof of the above theorem depends on the following Proposition 4.2.



Proposition 4.2 Let ¢p((A) = ¢’(A) — b for X > 0, where ¢’ is given by (3.2). We can define a
Feller transition semigroup (Q%)+>o0 on [0, co) by

/[O,oo) e QP (z,dy) = exp{ — zvi(A) — /Ot (bf)(vs()\))ds}. (4.3)
Moreover, we have
Qb(z,dy) = e®* 2z 'yQs(z,dy), = >0 (4.4)
and
Qz(0,dy) = e"[hdo(dy) + yli(dy)]. (4.5)

e The transition semigroup (Q?%);>o defined by (4.3) is that of a special CBI-process.
o Let (W, %, #;, w(t), Q‘;) be the canonical cadlag realization of the CBIl-process. Then
w(T)No(dw) = e~ T Q% (dw) on #7 = o({w(s) : 0 < s < T}), (4.6)

which gives rigorously supp(No) C Wp.



4.2 The canonical Kuznetsov measure

Theorem 4.3 When § := ¢'(o0) < oo, we have ¢ = 0 and, fort > 0 and A > 0,
t
ve(A) = e AN 4 / e_‘ssds/ (1 — e *V—sN)m(dz). (4.7)
0 (0,00)
Consequently, the Lévy—Kthintchine formula (3.11) for v¢(X) holds with

t
he =e %, 1, = / e *mQ?_.ds, t>0. (4.8)
0

Theorem 4.4 Suppose that § := ¢’(oc0) < oo. Then there is a o-finite measure Ny carried by
Wi = {w € W : a(w) > 0,w(a(w)) >0} C W
such that, foranyt > r > 0, F € b#,. and X > 0,
Ni[F(w)(1 — e O)] = Ny [F(w)(1 — e~ 2=rNw())
+ F([0])[e ™% vsp (A) — e7*A]. (4.9)

e The proof of Theorem 4.4 is based on the relations in (4.8).

¢ In Markov processes, N; is known as a Kuznetsov measure; see, e.g., Dellacherie et al. (1992).



5 Structures of sample paths

5.1 Cluster representations of the CB-process

Theorem 5.1 Suppose that ¢'(c0) = oco. Letv > 0 and let N(dw) = > 72, 8w, (dw) be a
Poisson random measure on W with intensity vINy(dw), where Ny is the excursion law (carried
by Wy C W). Let Xo = v and fort > 0 let

X, = /Ww(t)N(dw) =) wi(t). (5.1)
=1

Then {X: : t > 0} is a realization of the CB-process.

4)
o L2 0




Theorem 5.2 Suppose that § := ¢’'(00) < co. Letv > 0 and let N (dw) = Y72, 8w, (dw) be
a Poisson random measure on W with intensity vN;y (dw), where N; is the canonical Kuznetsov
measure (carried by Wy C W). Foranyt > 0 let

X, =ve % / w(t)N(dw) = ve % 4+ Z w; (t). (5.2)
w =1

Then {X. : t > 0} is a realization of the CB-process.




5.2 Flow of CB-processes

Let X = (W, %, %4, w(t), Q) be a canonical realization of the CB-process. By Theorem 1.4,
Quitvy, = Qu, * Qu,, wv1,v2 > 0. (5.3)

Then (Qv).>0 is a convolution semigroup on the path space (W, #).

Proposition 5.3 Suppose that ¢’ (co) = oo. Let N(dw, du) be a Poisson random measure on
W x (0, 00) with intensity No(dw)du. Forv > 0 let Xo(v) = v and

Xi(v) = /W /Ov w(t)N(du,dw), t > 0. (5.4)

Then {X¢(v) : t > 0} is a realization of the CB-process.

Proposition 5.4 Suppose that § := ¢’(o0) < oo. Let N(dw,du) be a Poisson random mea-
sure on W x (0, oo) with intensity Ny (dw)du. Forv,t > 0 let

X (v) = ve % 4 /W /0 ’ w(t)N (dw, du). (5.5)

Then {X¢(v) : t > 0} is a realization of the CB-process.



Let p be the metric on W defined by (b = ¢’(0))

p(w1,w2) = sup ebs|w1(s) — wa(s)|, wi,ws € W. (5.6)
S—

Theorem 5.5 There is a version of the random field { X¢(v) : v > 0,t > 0} defined by (5.4) or
(5.5) with the following properties:

(i) The path-valued process {X (v) : v > 0} is increasing and p-cadlag and has stationary and
independent increments.

(ii) Foranyws > vy > 0 the difference X (vy) — X (v1) = {X¢(v2) — X (v2) : t > 0} is a CB-process
with transition semigroup (Q¢):>o-

Remarks:

e The path-valued process {X (v) : v > 0} is a Lévy process with state space (W, #'), and (5.4)
and (5.5) give its Lévy—Itd representation in the cases ¢’(oco0) = oo and < oo, respectively.

e The random field {X:(v) : v > 0,t > 0} is a realization of the flow of subordinators introduced by
Bertoin and Le Gall (2000, 2003, 2005, 2006).



Observations:

o If§ := ¢'(00) = oo, then v = X (v) = (X¢(v))¢>0 iS pure jump process.

Uhi, | = ==

0 T 0 v

A pure jump increasing path-valued Lévy process v — X (v) = (X¢(v))¢>o0-



o If 0 := ¢'(c0) < oo, then v = X(v) = (X¢(v))s>o has the continuous drift part
v — (ve_ét)tzo.

X:(v)

vT .\o\"\

N

-



Lecture lll: Stochastic equations



6 Martingale problems for CBl-processes

6.1 Reviews

The branching and immigration mechanisms (¢, ¢) are functions on [0, co) given by

d(A) = bA + cA? + (e™** — 1 + Az)m(dz),

(0,00)

and

P(A) = BA + (1—e ?*)v(dz), A>o0.
(0,00)

A CBl-process has transition semigroup (Q7)¢>o such that
t
| e Qi@ dy) = exp { — oo = [ w(e(N)ds.
[0,00) 0
where t — v () is the unique positive solution of

20N = —@A), v = A

6.1)

(6.2)

(6.3)

(6.4)



6.2 A forward integral equation

Proposition 6.1 Foranyt > 0 and A > 0 we have

t
/ e Q] (z,dy) = e~ + / ds / wo(N) — $(\)]e ¥ Q2 (z,dy).  (6.5)
[0,00) 0 [0,00)

6.3 Equivalent martingale problems

Let C12([0, 00)?2) be the set of bounded continuous real functions (t, ) — G(t,x) on [0, co)?
with bounded continuous derivatives up to the first order relative to ¢ > 0 and up to the second
order relative to > 0.

Let C2[0, co) denote the set of bounded continuous real functions on [0, co) with bounded con-
tinuous derivatives up to the second order. For f € C?[0, co) define

Lf(z) = cxf’(z) + /( o @+ 2) = F(@) = 2/ (@)]m(d2)
+(8 — ba) f(x) + / [f(z + 2) — f(2)]v(d2). (6.6)

0,00



We shall identify L as the generator of the CBI-process.

Suppose that (R2,¥,%, P) is a filtered probability space satisfying the usual hypotheses and
{y(t) : t > 0} is a cadlag process in [0, co) that is adapted to (¥;).>¢ and satisfies P[y(0)] <
oo. Let us consider the following martingale problems:

(1) ForeveryT > 0and A > 0,

eXP{ —vr—(M)y(t) — /T_tw(vs(k))dS}, 0<t<T,
is a martingale. ’
(2) Forevery A > 0,
) = o { =200 + [ 100 ~u@slas) t20
is a local martingale.

(8) The process {y(t) : t > 0} a semi-martingale with no negative jumps and the optional
random measure

No(ds,dz) := ) 1{ay(s)0}0(s,ay(s)) (ds, d2),
s>0



where Ay(s) = y(s) — y(s—), has predictable compensator Ny(ds,dz) = dsv(dz) +
y(s—)dsm(dz). Let No(ds,dz) = Ny(ds, dz) — No(ds,dz). We have

t

y(t) = y(0) + M(t) + M%(t) — b /0 y(s—)ds + ¢/ (0)t,

where {M€(t) : t > 0} is a continuous local martingale with quadratic variation 2cy(t—)dt
and

t
M3(t) = / / zNp(ds,dz), t>0,
0 J(0,00)
is a purely discontinuous local martingale.

(4) Forevery f € C?[0,00) we have
t
F(y(t)) = f(y(0)) —|-/0 Lf(y(s))ds + local mart. 6.7)
(5) Forany G € C*2([0,00)?) we have

G(t,y(t)) = G(0,y(0)) + /0 (G (s,y(s)) + LG(s,y(s))]ds + local mart. (6.8)

where L acts on the function = — G(s, x).



Theorem 6.2 The above properties (1), (2), (3), (4) and (5) are equivalent to each other. Those
properties hold if and only if {(y(t),%) : t > 0} is a CBl-process with branching mechanism ¢
and immigration mechanism ).

Corollary 6.3 Let {(y(t),%) : t > 0} be a cadlag realization of the CBI-process satisfying
Ply(0)] < oco. Then the above properties (3), (4) and (5) hold with the local martingales being
martingales.



7 Stochastic equations for CBIl-processes

In this and the next section, we understand
b oo
/:/ and/ :/ , b>a>0.
a (a,b] a (a,00)

7.1 Weak solutions

Let { B(t)} be a standard Brownian motion and { M (ds, dz, du)} a Poisson time-space random
measure on (0, co)3 with intensity dsm(dz)du. Let {n(t)} be an increasing Lévy process with
1n(0) = 0 and with Laplace exponent

P(A) = —log Pexp{—An(1)}, A >0. (7.1)
We assume all those are independent of each other. Consider the stochastic integral equation
t
y(t) = y(O)—l—/ vV 2cy(s—)dB(s) —b/ y(s—)ds
y(s—)
—I-/ / / zM (ds, dz, du) + n(t), (7.2)



where M (ds,dz,du) = M(ds, dz,du) — dsm(dz)du denotes the compensated measure.

We understand the forth term on the right-hand side of (7.2) as an integral over the random set
{(s,z,u) : 0<s<t,0< 2z < 00,0 < u< y(s—)}. Similar interpretations are given for other
stochastic integral equations like (7.2).

By saying that {y(¢) : ¢ > 0} is a weak solution to (7.2), we mean it is a positive cadlag process
defined on some probability space with the noises {B(t)}, {M(ds,dz,du)} and {n(¢t)} such
that the equation holds almost surely for every ¢t > 0.

We refer to Ikeda and Watanabe (1989) and Situ (2005) for the basic theory of stochastic equa-
tions.

Theorem 7.1 A positive cadlag process {y(t) : t > 0} is a CBIl-process with branching and
immigration mechanisms (¢, 1) given respectively by (2.9) and (1.8) if and only if it is a weak
solution to (7.2).

Let {M(ds,dz,du)} and {n(s)} be as in (7.2). Let {W(ds,du)} be a Gaussian time-space
white noise on (0, co)? with intensity 2cdsdu. We assume the noises are independent of each



other. Consider the stochastic integral equation

t
0

t oo (s=) _
_|_/ / /y zM (ds,dz,du) + n(t). (7.3)
o Jo Jo

u(t) = v + | t / "7 W(ds,du) - b | uts-as

Theorem 7.2 A positive cadlag process {y(t) : t > 0} is a CBIl-process with branching and
immigration mechanisms (¢, 1) given respectively by (2.9) and (1.8) if and only if it is a weak
solution to (7.3).

From (7.2) or (7.3) we see that the immigration of the CBI-process {y(t)} is represented by the
increasing Lévy process {n(t)}. By the Lévy—It6 decomposition, there is a Poisson time-space
random measure {N (ds, dz)} with intensity dsv(dz) such that

t oo
n(t) = Bt —i—/o /0 zN(ds,dz), t>0.

Then the immigration of {y(¢)} involves two parts: the continuous part determined by the drift
coefficient 3 and the discontinuous part given by the Poisson random measure { N (ds,dz)}.



7.2 Strong solutions and comparisons

Theorem 7.3 For any initial value y(0) = x > 0, there are pathwise unique positive (strong)
solutions to (7.2) and (7.3).

Theorem 7.4 Suppose that {y1(t) : t > 0} and {y2(t) : t > 0} are two positive solutions to
(7.3) with P{y1(0) < y2(0)} = 1. Then we have P{y1(t) < ya(t) forallt > 0} = 1.

A comparison properties of the solutions to (7.2) can also be established.

7.3 The time-space white Lévy noise

Let {L(ds,du)} be the spectrally positive time-space (%;)-Lévy white noise on (0, co)? defined
by

L(ds,du) = W(ds,du) — bdsdu + zM(ds,dz,du). (7.4)
{0<z<0}



We may rewrite (7.3) as

t (s—)
mw=mm+[;f L(ds,du) + n(t), > 0. 7.5)

7.4 Flow of CBl-processes

Let {L(ds,du)} be the Lévy time-space white noise on (0, c0)? defined by (7.4). Let {n(t)}
be an increasing Lévy process with n(0) = 0 and with Laplace exponent given by (7.1). We
assume the noises are independent of each other.

By Theorem 7.3, for each v > 0 there is a pathwise unique solution {Y;(v) : t > 0} to
t Y, (v)
Vi) =v+ [ [ L(ds,du) + (@), 7.6)
0 JO

Recall that W denotes the space of positive cadlag paths on [0, co). Define the metric p by

p(wi, ws) = sup e®®lwi(s) — wa(s)|, w1, ws € W. (7.7)
s>0



Theorem 7.5 There is a version of the random field {Y;(v) : v > 0,t > 0} defined by (7.6)
with the following properties:

e The path-valued process {Y (v) : v > 0} is increasing and p-cadlag and has stationary
and independent increments.

e Forany vy > vy > O the difference Y (v2) — Y (v1) = {Yi(v2) — Yz(v2) : t > 0} is a

CB-process with transition semigroup (Q+)¢>o-

By Theorem 7.5, the path-valued process {Y (v) : v > 0} is a Lévy process with state space
(W, #). The initial state of {Y (v) : v > 0} is the CBI-process Y (0) = {Yz(0) : t > 0}.

7.5 Stable Lévy noises

Letc,g > 0,b € Rand1 < a < 2 be given constants. Let {B(t)} be a standard Brownian
motion. Let {z(¢)} be a spectrally positive a-stable Lévy process with Lévy measure

~v(dz) := (a — 1)I(2 — o) "1z~ 17dz, z>0



and {n(t)} an increasing Lévy process with n(0) = 0 and with Laplace exponent ). We assume
the noises are independent of each other. Consider the stochastic differential equation

dy(t) = v2cy(t—)dB(t) + ¥ aqy(t—)dz(t) — by(t—)dt + dn(t), (7.8)

Theorem 7.6 A positive cadlag process {y(t) : t > 0} is a CBl-process with branching mecha-
nism ¢(A) = b + cA? 4+ g\™ and immigration mechanism ) given by (1.8) if and only if it is a
weak solution to (7.8).

Theorem 7.7 For any initial value y(0) = = > 0, there is a pathwise unique positive strong
solution to (7.8).

7.6 Examples

Suppose that {£,,; : n,7 = 1,2,...} and {n,, : n = 1,2,...} are two independent families
of N-valued i.i.d. random variables. Given the initial state Y (0) € N independent of {£,;} and



{nn}, we can define a discrete-state branching process with immigration by

Y (n—1)
Y(n) = Z €n,i + Mn, n > 1. (7.9)

Example 7.8 The equation (7.3) can be thought as a continuous time-space counterpart of the
definition (7.9) of the DBI-process. In fact, assuming p = E(§1,1) < oo, we have

Y (n—1)
Y(n)=Y(n—1)+ > (ni—n)—Q—p)Y(@n—1)+n,. (7.10)
i—1
It follows that
n Y(k—1)
Y(n) = Y(0)+Z Z (€kyi — (1—M)ZY(k—1)+an (7.11)

The exact continuous time-space counterpart of (7.11) would be the stochastic integral equation

t poo (s—) _ t
y(t) = y(0) + /0 /0 /Oy £VT(ds, dE, du) — /0 by(s—)ds + (),  (7.12)

which is a typical special form of (7.3); see Bertoin and Le Gall (2006) and Dawson and Li (2006).



Example 7.9 The stochastic differential equation (7.8) captures the structure of the CBI-process
in a typical special case. Let1 < o < 2. Under the condition p := E(£1,1) < oo, we have

Y (n—1)

Y(m) -Y(n-1)=¢Y@-1 3 o;% (1= pwYm—=1)+ 5.

A continuous time-state counterpart of the above equation would be

dy(t) = {aqy(t—)dz(t) — by(t)dt + Bdt, ¢ >0, (7.13)

where {z(t) : t > 0} is a standard Brownian motion if o« = 2 and a spectrally positive a-stable
Lévy process. This is a typical special form of (7.8); see Fu and Li (2010).

Example 7.10 When o = 2 and 3 = 0, the solution to (7.13) is a diffusion process and known
as Feller’s branching diffusion. This process was first studied by Feller (1951).



8 Recent topics and applications

8.1 Distributional properties of jumps

Let {«(t) : t > 0} be a CB-process. For A € #(0, o) let

xa(t) = Card{s € (0,¢t] : z(s) —z(s—) € A},
TA = inf{s > 0:x(s) —xz(s—) € A},
M(t) = max{xz(s) —x(s—) :s € (0,t]}.

Characterizations of the distributions of those random variables can be derived easily from the
stochastic equations, say,

xz(t) = x(0) + /Ot /000 /096(8—) zM (ds,dz, du),
za(t) = o+/0t/A/0y(s_) M (ds, dz, du).

The equations show that {(x(t),za(t)) : t > 0} is a two-dimensional CB-process.



8.2 \Variation of the transition probabilities

Letz >y > 0andlet {x(¢t) : t > 0} and y(¢) : t > 0} be CBl-processes defined by

t rx(s—)

2(t) =x + /0 /0 L(ds, du) + n(t),
t px(s—)

y(t) = y+ / / L(ds, du) + n(t).

Then {&(t) := =(t) — y(t) : t > 0} is a CB-process since

t ré(s—)
Et)=x—vy —l—/o /0 L(ds,z(s—)+du).

This leads to the useful estimate for the variation of the transition probabilities:

1Q(,-) — Qe(w, llvar = sup / £(2)Qu(, dz) — / £(2)Qu(y, dz)
[|£I1<1 1 J[0,00) [0,00)
= sup [EL7 (@) ~ EL (@]
< sup E[|f(((t) — F((w(®)]] < 2P(E(t) # 0).

IFiI<1
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