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0 Introduction

Let {ξn,i : n, i ≥ 1} be a family of i.i.d. random variables taking values in N := {0, 1, . . . }.

Given the initial state X(0) ∈ N, one can define a discrete-state (space-time) branching process
{X(n) : n ≥ 0} by (Bienaymé, 1845; Galton–Watson, 1874)

X(n) =

X(n−1)∑
i=1

ξn,i, n ≥ 1. (0.1)

• The one-step transition probabilities satisfy the branching property

Q(x+ y, ·) = Q(x, ·) ∗Q(y, ·), x, y ∈ N. (0.2)

• Consider a sequence of branching processes {Xk(n) : n ≥ 0}, k ≥ 1.

• A continuous-state branching process {x(t) : t ≥ 0} arises as the limit (Feller ’51)

x(t) = lim
k→∞

1

k
Xk(bktc), t ≥ 0. (0.3)
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A continuous-state branching process {x(t) : t ≥ 0} is a Markov process in R+ := [0,∞) with
transition semigroup (Qt)t≥0 satisfying the branching property

Qt(x+ y, ·) = Qt(x, ·) ∗Qt(y, ·), x, y ≥ 0. (0.4)

This implies {Qt(x, ·) : x ≥ 0} is a convolution semigroup on [0,∞), so∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ, t, x ≥ 0, (0.5)

where (vt)t≥0 is the cumulant semigroup with representation

vt(λ) = htλ+

∫ ∞
0

(1− e−λy)lt(dy). (0.6)

• Lecture I: Basic structures and construction of (vt)t≥0.

Let Qv be the law in a suitable path space of the process {x(t) : t ≥ 0} with x(0) = v. Then
(Qv : v ≥ 0) is a convolution semigroup.

• Lecture II: Lévy-Itô representation of the path-valued Lévy process.
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Recall that a discrete-state branching process is defined from i.i.d. random variables {ξn,i} by

X(n) =

X(n−1)∑
i=1

ξn,i. (0.7)

It follows that

X(n) = X(n− 1) +

X(n−1)∑
i=1

(ξn,i − 1),

X(n) = X(0) +

n∑
k=1

X(k−1)∑
i=1

(ξk,i − 1).

A continuous-state branching process {x(t) : t ≥ 0} solves (Bertoin–Le Gall ’06; Dawson–Li
’06/’12)

x(t) = x(0) +

∫ t

0

∫ x(s−)

0

L(ds, du), (0.8)

where L(ds, du) is a spectrally positive Lévy white noise on (0,∞)2.

• Lecture III: Existence and uniqueness of the solution to (0.8) and applications.
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Sources of the materials

Jiao (’20, Chap. 1) and Li (’22)
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Lecture I: The CB-semigroup
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1 Branching and immigration structures

1.1 The branching property

A Markov transition semigroup (Qt)t≥0 on the state space [0,∞) is called a continuous-state
branching semigroup (CB-semigroup) if it satisfies the branching property:

Qt(x+ y, ·) = Qt(x, ·) ∗Qt(y, ·), t, x, y ≥ 0, (1.1)

where “∗” denotes the convolution operation.

A set of self-maps (vt)t≥0 of [0,∞) is called a cumulant semigroup if

• (Lévy–Kthintchine representation) for t ≥ 0 we have

vt(λ) = htλ+

∫
(0,∞)

(1− e−λy)lt(dy), λ ≥ 0; (1.2)

• (Semigroup property) for t, r ≥ 0,

vr+t(λ) = vr ◦ vt(λ) = vr(vt(λ)), λ ≥ 0. (1.3)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 1.1 There is a 1-1 correspondence between CB-semigroups (Qt)t≥0 and cumulant
semigroups (vt)t≥0, which is given by∫

[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ, t, x ≥ 0. (1.4)

• A Markov process {X(t) : t ≥ 0} is called a continuous-state branching process (CB-
process) if its transition semigroup is a CB-semigroup.

Theorem 1.2 The CB-semigroup (Qt)t≥0 given by (1.4) is a Feller semigroup if and only if
(vt)t≥0 is a continuous cumulant semigroup, i.e. t 7→ vt(λ) is continuous for every λ ≥ 0.

Corollary 1.3 A CB-process with continuous cumulant semigroup has a realization as a (càdlàg)
Hunt process.

Theorem 1.4 If {x1(t) : t ≥ 0} and {x2(t) : t ≥ 0} are two independent CB-processes with
transition semigroup (Qt)t≥0, then so is {x1(t) + x2(t) : t ≥ 0}.
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1.2 Structures of immigration

Suppose that (Qt)t≥0 is the CB-semigroup defined by (1.4) from a continuous cumulant semi-
group (vt)t≥0. Let (γt)t≥0 be a family of probability measures on [0,∞).

We call (γt)t≥0 a skew convolution semigroup (SC-semigroup) associated with (Qt)t≥0 provided

γr+t = (γrQt) ∗ γt, r, t ≥ 0. (1.5)

Theorem 1.5 The family of probability measures (γt)t≥0 on [0,∞) is an SC-semigroup if and
only if a Markov transition semigroup (Qγt )t≥0 on [0,∞) is defined by

Qγt (x, ·) = Qt(x, ·) ∗ γt, t, x ≥ 0. (1.6)

If {y(t) : t ≥ 0} is a Markov process with transition semigroup (Qγt )t≥0 given by (1.6), we call
it a continuous-state branching process with immigration (CBI-process) associated with (Qt)t≥0.

• By (1.6), the population at time t ≥ 0 is made up of two parts; the native part generated by the
mass x ≥ 0 has distribution Qt(x, ·) and the immigration part has distribution γt.
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On the skew convolution equation:

(0, r + t] = (0, r] ∪ (r, r + t]

↓ ↓ ↓
γr+t γr

t
 γrQt γt

Theorem 1.6 The family of probability measures (γt)t≥0 on [0,∞) is an SC-semigroup if and
only if its Laplace transform has the representation∫

[0,∞)

e−λyγt(dy) = exp
{
−
∫ t

0

ψ(vs(λ))ds
}
, t, λ ≥ 0, (1.7)

where

ψ(λ) = βλ+

∫
(0,∞)

(
1− e−λz

)
ν(dz). (1.8)

• If vt(λ) ≡ λ, then (γt)t≥0 reduces to a classical convolution semigroup:∫
[0,∞)

e−λyγt(dy) = e−tψ(λ), t, λ ≥ 0. (1.9)
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Let (Qγt )t≥0 be defined by (1.6) with the SC-semigroup (γt)t≥0 given by (1.7). Then∫
[0,∞)

e−λyQγt (x, dy) = exp
{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds
}
. (1.10)

We call ψ the immigration mechanism of a CBI-process with transition semigroup (Qγt )t≥0.

Theorem 1.7 If (γ1(t))t≥0 and (γ2(t))t≥0 are two SC-semigroups associated with (Qt)t≥0,
then so is (γ1(t) ∗ γ2(t))t≥0.

Theorem 1.8 Suppose that {y1(t) : t ≥ 0} and {y2(t) : t ≥ 0} are two independent CBI-
processes associated with (Qt)t≥0 having immigration mechanisms ψ1 and ψ2, respectively.
Then {y1(t) + y2(t) : t ≥ 0} is a CBI-process associated with (Qt)t≥0 having immigration
mechanism ψ := ψ1 + ψ2.
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2 Construction of CB-processes

2.1 Discrete-state branching processes

Let {p(j) : j ∈ N} be a probability distribution on the space of positive integers N := {0, 1, 2, . . .}.
It is well-known that {p(j) : j ∈ N} is uniquely determined by its generating function

g(z) :=

∞∑
j=0

p(j)zj, |z| ≤ 1.

Let {ξn,i : n, i = 1, 2, . . .} be N-valued i.i.d. random variables with distribution {p(j) : j ∈ N}.
Given a random variable x(0) ∈ N independent of {ξn,i}, we define successively

x(n) =

x(n−1)∑
i=1

ξn,i, n = 1, 2, . . . . (2.1)

For i ∈ N let Q(i, ·) = p∗i(·). Then {x(n) : n ≥ 0} is a Markov chain with transition matrix
Q = (Q(i, j) : i, j ∈ N).
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It is easy to see that

∞∑
j=0

Q(i, j)zj =
∞∑
j=0

p∗i(j)zj = g(z)i, i ∈ N, |z| ≤ 1. (2.2)

A Markov chain in N with transition matrix defined by (2.2) is called a discrete-state branching
process (DB-process) with branching distribution given by g.

For any n ≥ 1 the n-step transition matrix of the DB-process is just the n-fold product matrix
Qn = (Qn(i, j) : i, j ∈ N).

Proposition 2.1 For any n ≥ 1 and i ∈ N we have

∞∑
j=0

Qn(i, j)zj = g◦n(z)i, |z| ≤ 1, (2.3)

where g◦n is defined by g◦n(z) = g ◦ g◦(n−1)(z) = g(g◦(n−1)(z)) successively with g◦0(z) =

z by convention.
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2.2 Rescaled DB-processes

Let {xk(n) : n ≥ 0} be a DB-process with branching distribution given by the probability gener-
ating function gk, where k = 1, 2, . . . . Let zk(n) = k−1xk(n).

Then {zk(n) : n ≥ 0} is a Markov chain with state space Ek := {0, k−1, 2k−1, . . .} and
n-step transition probability Qnk (x, dy) determined by∫

Ek

e−λyQnk (x, dy) = g◦nk (e−λ/k)kx, λ ≥ 0. (2.4)

Let γk →∞ increasingly as k→∞. Let bγktc denote the integer part of γkt.

Given zk(0) = x ∈ Ek, for any t ≥ 0 the random variable

zk(bγktc) = k−1xk(bγktc)

has distribution Qbγktck (x, ·) on Ek determined by∫
Ek

e−λyQ
bγktc
k (x, dy) = exp{−xvk(t, λ)}, (2.5)
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where

vk(t, λ) = −k log g
◦bγktc
k (e−λ/k). (2.6)

By (2.6), for γ−1
k (i− 1) ≤ t < γ−1

k i we have

vk(t, λ) = vk(0, λ) +

bγktc∑
j=1

[vk(γ
−1
k j, λ)− vk(γ−1

k (j − 1), λ)]

= λ− k
bγktc∑
j=1

[log g◦jk (e−λ/k)− log g
◦(j−1)
k (e−λ/k)]

= λ− γ−1
k

bγktc∑
j=1

φk(−k log g
◦(j−1)
k (e−λ/k))

= λ− γ−1
k

bγktc∑
j=1

φk(vk(γ
−1
k (j − 1), λ))

= λ−
∫ γ
−1
k bγktc

0

φk(vk(s, λ))ds, (2.7)
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where

φk(λ) = kγk log
[
gk(e

−λ/k)eλ/k
]
. (2.8)

2.3 The branching mechanism

A convex function φ on [0,∞) is called a branching mechanism if it has the representation

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(
e−λz − 1 + λz

)
m(dz), λ ≥ 0, (2.9)

where c ≥ 0 and b are constants and (z ∧ z2)m(dz) is a finite measure on (0,∞).

Condition 2.2 The sequence {φk} is uniformly Lipschitz on [0, a] for every a ≥ 0 and there is
a function φ on [0,∞) so that φk(λ)→ φ(λ) uniformly on [0, a] for every a ≥ 0 as k→∞.

Proposition 2.3 If Condition 2.2 is satisfied, then φ is a branching mechanism with representa-
tion (2.9).

Proposition 2.4 For every branching mechanism φ given by (2.9), there is a sequence {φk} in
the form of (2.8) satisfying Condition 2.2.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.4 The CB-semigroup / process

Theorem 2.5 Suppose that Condition 2.2 holds. Then for every a ≥ 0 we have vk(t, λ) →
some vt(λ) uniformly on [0, a]2 as k→∞ and the limit function solves

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds, λ, t ≥ 0. (2.10)

Theorem 2.6 Suppose that φ is a function given by (2.9). Then for any λ ≥ 0 there is a unique
positive solution t 7→ vt(λ) to (2.10) and (vt)t≥0 is a cumulant semigroup.

Corollary 2.7 Under the assumption of Theorem 2.6, there is a Feller CB-semigroup (Qt)t≥0

defined by ∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ, t, x ≥ 0. (2.11)

We say a CB-process has branching mechanism φ if its transition semigroup (Qt)t≥0 is defined
by (2.11).
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Let W denote the space of positive càdlàg paths on [0,∞) furnished with the Skorokhod topolo-
gy; see, e.g., Ethier and Kurtz (1986).

Theorem 2.8 Suppose that Condition 2.2 holds. Let {x(t) : t ≥ 0} be a càdlàg CB-process
with transition semigroup (Qt)t≥0 defined by (2.10) and (2.11). If zk(0) converges to x(0) in
distribution, then {zk(bγktc) : t ≥ 0} converges to {x(t) : t ≥ 0} in distribution on W .

Observation: Propositions 2.3 and 2.4 indicate that the CB-processes give exactly all possible
scaling limits of DB-processes.

Problems:

• Characterize the class of all possible scaling limits of discrete-state branching processes in i.i.d.
random environments.

• Characterize the class of continuous-state branching processes in varying environments defined by∫
[0,∞)

e−λyQr,t(x, dy) = e−xvr,t(λ), λ, x ≥ 0, t ≥ r ≥ 0; (2.12)

see Bansaye and Simatos (2015, EJP) and Fang and L (2022, AOAP).
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Lecture II: The Lévy–Itô representation
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3 Some simple properties

3.1 Reviews

The branching mechanism φ of a CB-process is a convex function on [0,∞) given by

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(
e−λz − 1 + λz

)
m(dz), λ ≥ 0, (3.1)

where c ≥ 0 and b are constants and (z ∧ z2)m(dz) is a finite measure on (0,∞). We have

φ′(λ) = b+ 2cλ+

∫
(0,∞)

z
(
1− e−λz

)
m(dz), λ ≥ 0. (3.2)

For this branching mechanism, there is a CB-semigroup (Qt)t≥0 such that∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ), λ, t, x ≥ 0, (3.3)

where t 7→ vt(λ) is the unique positive solution of

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds, λ, t ≥ 0. (3.4)

The CB-process could be constructed for more general φ (including Neveu’s φ(λ) ≡ λ log λ).
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3.2 Forward and backward differential equations

From (3.4) we see that t 7→ vt(λ) is first continuous and then continuously differentiable. More-
over, it is easy to see that

∂

∂t
vt(λ)

∣∣∣
t=0

= −φ(λ), λ ≥ 0.

By the semigroup property vt+s = vs ◦ vt = vt ◦ vs, we get the backward differential equation:

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ, (3.5)

and forward differential equation:

∂

∂t
vt(λ) = −φ(λ)

∂

∂λ
vt(λ), v0(λ) = λ. (3.6)

We can also rewrite (3.6) into its integral form:

vt(λ) = λ−
∫ t

0

φ(λ)
∂

∂λ
vs(λ)ds, t ≥ 0. (3.7)
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3.3 The first moment

From (3.3) and (3.4) it follows that∫
[0,∞)

yQt(x, dy) = xe−φ
′(0)t = xe−bt, t ≥ 0, x ≥ 0. (3.8)

Proposition 3.1 If {x(t) : t ≥ 0} is a CB-process with branching mechanism φ, then {ebtx(t) :

t ≥ 0} is a positive martingale.

3.4 The spectrally positive Lévy process

The branching mechanism φ is the Laplace exponent of a spectrally positive Lévy process, which
is connected with the CB-process by Lamperti’s time changes; see Kyprianou (2014, Springer).

We have (0 · ∞ = 0)

φ′(0) = b, φ′(∞) = b+ 2c · ∞+

∫
(0,∞)

zm(dz).

The Lévy process has infinite variations if and only it φ′(∞) =∞.
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3.5 The extinction time

By Corollary 1.3, the CB-process has a Hunt process realization X = (Ω,F ,Ft, x(t),Qx). Let
τ0 := inf{s ≥ 0 : x(s) = 0} denote the extinction time.

Theorem 3.2 For every t ≥ 0 the limit v̄t = limλ→∞ vt(λ) exists in (0,∞]. Moreover, the
mapping t 7→ v̄t is decreasing and for any t ≥ 0 and x > 0 we have

Qx{τ0 ≤ t} = Qx{x(t) = 0} = exp{−xv̄t}. (3.9)

Condition 3.3 (Grey’s condition) There is some constant θ > 0 so that

φ(z) > 0 for z ≥ θ and
∫ ∞
θ

φ(z)−1dz <∞.

Theorem 3.4 We have v̄t < ∞ for some and hence all t > 0 if and only if Condition 3.3 holds.
In this case, t 7→ v̄t = lt(0,∞) is the unique solution to

d

dt
v̄t = −φ(v̄t), v̄0+ =∞. (3.10)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.6 The canonical entrance rule

The cumulant semigroup (vt)t≥0 has the canonical Lévy–Kthintchine representation:

vt(λ) = htλ+

∫
(0,∞)

(1− e−λz)lt(dz), t ≥ 0, λ ≥ 0, (3.11)

Write Q◦t (x, dz) = 1{z>0}Qt(x, dz). Then vr+t = vr ◦ vt implies, for all t, r > 0,

hr+t = hrht, lr+t(dz) = hrlt(dz) + lrQ
◦
t (dz), (3.12)

and so lr+t ≤ lrQ◦t . We call (lt)t>0 the canonical entrance rule.

Theorem 3.5 We have ht = 0 for some and hence all t > 0 if and only if φ′(∞) = ∞. In this
case, the family (lt)t>0 is an entrance law, i.e., lr+t = lrQ

◦
t for all t, r > 0.

• In the situation of Theorem 3.5, as x ↓ 0,∫
(0,∞)

(1− e−λz)x−1Q◦t (x, dz) = x−1(1− e−xvt(λ)) ↑ vt(λ) =

∫
(0,∞)

(1− e−λz)lt(dz).
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3.7 The space of paths

Let W be the space of positive càdlàg paths on [0,∞) furnished with the σ-algebras

W = σ({w(s) : 0 ≤ s <∞}), Wt = σ({w(s) : 0 ≤ s ≤ t}), t ≥ 0.

For w ∈W let α(w) = inf{s ≥ 0 : w(s) > 0} and

ζ(w) = inf{s > α(w) : w(s) or w(s−) = 0}.

Let Ŵ = {w ∈W : w(t) = 0 for t < α(w) and t ≥ ζ(w)} ⊂W .
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4 Canonical Kuznetsov measures

4.1 The canonical excursion law

Theorem 4.1 Suppose that φ′(∞) = ∞ and let (lt)t>0 be the canonical entrance law. Then
there is a unique σ-finite measure N0 on (W,W ) supported by

W0 := {w ∈ Ŵ : α(w) = w(0) = 0} ⊂ Ŵ

such that, for 0 < t1 < t2 < · · · < tn and x1, x2, . . . , xn > 0,

N0(w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn)

= lt1(dx1)Q◦t2−t1(x1, dx2) · · ·Q◦tn−tn−1
(xn−1, dxn). (4.1)

• Roughly speaking, (4.1) means {w(t) : t ≥ 0} under N0 is a CB-process.

• Let (W,W ,Wt, w(t),Qx) be the canonical càdlàg realization of the CB-process. Formally,

lt = lim
x→0

x−1Q◦t (x, ·) ⇒ N0 = lim
x→0

x−1Qx ⇒ supp(N0) ⊂W0. (4.2)

• The rigorous proof of the above theorem depends on the following Proposition 4.2.
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Proposition 4.2 Let φ′0(λ) = φ′(λ)− b for λ ≥ 0, where φ′ is given by (3.2). We can define a
Feller transition semigroup (Qbt)t≥0 on [0,∞) by∫

[0,∞)
e−λyQbt(x, dy) = exp

{
− xvt(λ)−

∫ t

0
φ′0(vs(λ))ds

}
. (4.3)

Moreover, we have

Qbt(x, dy) = ebtx−1yQt(x, dy), x > 0 (4.4)

and

Qbt(0, dy) = ebt[htδ0(dy) + ylt(dy)]. (4.5)

• The transition semigroup (Qbt)t≥0 defined by (4.3) is that of a special CBI-process.

• Let (W,W ,Wt, w(t),Qbx) be the canonical càdlàg realization of the CBI-process. Then

w(T )N0(dw) = e−bTQb0(dw) on WT = σ({w(s) : 0 ≤ s ≤ T}), (4.6)

which gives rigorously supp(N0) ⊂W0.
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4.2 The canonical Kuznetsov measure

Theorem 4.3 When δ := φ′(∞) <∞, we have c = 0 and, for t ≥ 0 and λ ≥ 0,

vt(λ) = e−δtλ+

∫ t

0
e−δsds

∫
(0,∞)

(1− e−zvt−s(λ))m(dz). (4.7)

Consequently, the Lévy–Kthintchine formula (3.11) for vt(λ) holds with

ht = e−δt, lt =

∫ t

0

e−δsmQ◦t−sds, t ≥ 0. (4.8)

Theorem 4.4 Suppose that δ := φ′(∞) <∞. Then there is a σ-finite measure N1 carried by

W1 := {w ∈ Ŵ : α(w) > 0, w(α(w)) > 0} ⊂ Ŵ

such that, for any t > r ≥ 0, F ∈ bWr and λ ≥ 0,

N1[F (w)(1− e−λw(t))] = N1[F (w)(1− e−vt−r(λ)w(r))]

+F ([0])[e−δrvt−r(λ)− e−δtλ]. (4.9)

• The proof of Theorem 4.4 is based on the relations in (4.8).

• In Markov processes, N1 is known as a Kuznetsov measure; see, e.g., Dellacherie et al. (1992).
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5 Structures of sample paths

5.1 Cluster representations of the CB-process

Theorem 5.1 Suppose that φ′(∞) = ∞. Let v ≥ 0 and let N(dw) =
∑∞
i=1 δwi(dw) be a

Poisson random measure on W with intensity vN0(dw), where N0 is the excursion law (carried
by W0 ⊂ Ŵ ). Let X0 = v and for t > 0 let

Xt =

∫
W
w(t)N(dw) =

∞∑
i=1

wi(t). (5.1)

Then {Xt : t ≥ 0} is a realization of the CB-process.
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Theorem 5.2 Suppose that δ := φ′(∞) <∞. Let v ≥ 0 and let N(dw) =
∑∞
i=1 δwi(dw) be

a Poisson random measure on W with intensity vN1(dw), where N1 is the canonical Kuznetsov
measure (carried by W1 ⊂ Ŵ ). For any t ≥ 0 let

Xt = ve−δt +

∫
W

w(t)N(dw) = ve−δt +

∞∑
i=1

wi(t). (5.2)

Then {Xt : t ≥ 0} is a realization of the CB-process.
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5.2 Flow of CB-processes

Let X = (W,W ,Wt, w(t),Qx) be a canonical realization of the CB-process. By Theorem 1.4,

Qv1+v2 = Qv1 ∗ Qv2, v1, v2 ≥ 0. (5.3)

Then (Qv)v≥0 is a convolution semigroup on the path space (W,W ).

Proposition 5.3 Suppose that φ′(∞) =∞. Let N(dw,du) be a Poisson random measure on
W × (0,∞) with intensity N0(dw)du. For v ≥ 0 let X0(v) = v and

Xt(v) =

∫
W

∫ v

0
w(t)N(du, dw), t > 0. (5.4)

Then {Xt(v) : t ≥ 0} is a realization of the CB-process.

Proposition 5.4 Suppose that δ := φ′(∞) < ∞. Let N(dw,du) be a Poisson random mea-
sure on W × (0,∞) with intensity N1(dw)du. For v, t ≥ 0 let

Xt(v) = ve−δt +

∫
W

∫ v

0

w(t)N(dw,du). (5.5)

Then {Xt(v) : t ≥ 0} is a realization of the CB-process.
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Let ρ be the metric on W defined by (b = φ′(0))

ρ(w1, w2) = sup
s≥0

ebs|w1(s)− w2(s)|, w1, w2 ∈W. (5.6)

Theorem 5.5 There is a version of the random field {Xt(v) : v ≥ 0, t ≥ 0} defined by (5.4) or
(5.5) with the following properties:

(i) The path-valued process {X(v) : v ≥ 0} is increasing and ρ-càdlàg and has stationary and
independent increments.

(ii) For any v2 ≥ v1 ≥ 0 the differenceX(v2)−X(v1) = {Xt(v2)−Xt(v2) : t ≥ 0} is a CB-process
with transition semigroup (Qt)t≥0.

Remarks:

• The path-valued process {X(v) : v ≥ 0} is a Lévy process with state space (W,W ), and (5.4)

and (5.5) give its Lévy–Itô representation in the cases φ′(∞) =∞ and <∞, respectively.

• The random field {Xt(v) : v ≥ 0, t ≥ 0} is a realization of the flow of subordinators introduced by
Bertoin and Le Gall (2000, 2003, 2005, 2006).
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Observations:

• If δ := φ′(∞) =∞, then v 7→ X(v) = (Xt(v))t≥0 is pure jump process.

A pure jump increasing path-valued Lévy process v 7→ X(v) = (Xt(v))t≥0.
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• If δ := φ′(∞) < ∞, then v 7→ X(v) = (Xt(v))t≥0 has the continuous drift part
v 7→ (ve−δt)t≥0.
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Lecture III: Stochastic equations
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6 Martingale problems for CBI-processes

6.1 Reviews

The branching and immigration mechanisms (φ, φ) are functions on [0,∞) given by

φ(λ) = bλ+ cλ2 +

∫
(0,∞)

(
e−λz − 1 + λz

)
m(dz), (6.1)

and

ψ(λ) = βλ+

∫
(0,∞)

(
1− e−λz

)
ν(dz), λ ≥ 0. (6.2)

A CBI-process has transition semigroup (Qγt )t≥0 such that∫
[0,∞)

e−λyQγt (x, dy) = exp
{
− xvt(λ)−

∫ t

0
ψ(vs(λ))ds

}
. (6.3)

where t 7→ vt(λ) is the unique positive solution of

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ. (6.4)
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6.2 A forward integral equation

Proposition 6.1 For any t ≥ 0 and λ ≥ 0 we have∫
[0,∞)

e−λyQγt (x, dy) = e−xλ +

∫ t

0
ds

∫
[0,∞)

[yφ(λ)− ψ(λ)]e−yλQγs (x, dy). (6.5)

6.3 Equivalent martingale problems

Let C1,2([0,∞)2) be the set of bounded continuous real functions (t, x) 7→ G(t, x) on [0,∞)2

with bounded continuous derivatives up to the first order relative to t ≥ 0 and up to the second
order relative to x ≥ 0.

Let C2[0,∞) denote the set of bounded continuous real functions on [0,∞) with bounded con-
tinuous derivatives up to the second order. For f ∈ C2[0,∞) define

Lf(x) = cxf ′′(x) + x

∫
(0,∞)

[
f(x+ z)− f(x)− zf ′(x)

]
m(dz)

+ (β − bx)f ′(x) +

∫
(0,∞)

[
f(x+ z)− f(x)

]
ν(dz). (6.6)
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We shall identify L as the generator of the CBI-process.

Suppose that (Ω, G , Gt,P) is a filtered probability space satisfying the usual hypotheses and
{y(t) : t ≥ 0} is a càdlàg process in [0,∞) that is adapted to (Gt)t≥0 and satisfies P[y(0)] <

∞. Let us consider the following martingale problems:

(1) For every T ≥ 0 and λ ≥ 0,

exp

{
− vT−t(λ)y(t)−

∫ T−t

0

ψ(vs(λ))ds

}
, 0 ≤ t ≤ T,

is a martingale.

(2) For every λ ≥ 0,

Ht(λ) := exp

{
− λy(t) +

∫ t

0

[ψ(λ)− y(s)φ(λ)]ds

}
, t ≥ 0,

is a local martingale.

(3) The process {y(t) : t ≥ 0} a semi-martingale with no negative jumps and the optional
random measure

N0(ds, dz) :=
∑
s>0

1{∆y(s) 6=0}δ(s,∆y(s))(ds, dz),
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where ∆y(s) = y(s) − y(s−), has predictable compensator N̂0(ds, dz) = dsν(dz) +

y(s−)dsm(dz). Let Ñ0(ds, dz) = N0(ds, dz)− N̂0(ds, dz). We have

y(t) = y(0) +Mc(t) +Md(t)− b
∫ t

0
y(s−)ds+ ψ′(0)t,

where {Mc(t) : t ≥ 0} is a continuous local martingale with quadratic variation 2cy(t−)dt

and

Md(t) =

∫ t

0

∫
(0,∞)

zÑ0(ds, dz), t ≥ 0,

is a purely discontinuous local martingale.

(4) For every f ∈ C2[0,∞) we have

f(y(t)) = f(y(0)) +

∫ t

0

Lf(y(s))ds+ local mart. (6.7)

(5) For any G ∈ C1,2([0,∞)2) we have

G(t, y(t)) = G(0, y(0)) +

∫ t

0

[
G′t(s, y(s)) + LG(s, y(s))

]
ds+ local mart. (6.8)

where L acts on the function x 7→ G(s, x).
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Theorem 6.2 The above properties (1), (2), (3), (4) and (5) are equivalent to each other. Those
properties hold if and only if {(y(t), Gt) : t ≥ 0} is a CBI-process with branching mechanism φ

and immigration mechanism ψ.

Corollary 6.3 Let {(y(t), Gt) : t ≥ 0} be a càdlàg realization of the CBI-process satisfying
P[y(0)] < ∞. Then the above properties (3), (4) and (5) hold with the local martingales being
martingales.
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7 Stochastic equations for CBI-processes

In this and the next section, we understand∫ b

a
=

∫
(a,b]

and
∫ ∞
a

=

∫
(a,∞)

, b ≥ a ≥ 0.

7.1 Weak solutions

Let {B(t)} be a standard Brownian motion and {M(ds, dz, du)} a Poisson time-space random
measure on (0,∞)3 with intensity dsm(dz)du. Let {η(t)} be an increasing Lévy process with
η(0) = 0 and with Laplace exponent

ψ(λ) = − log P exp{−λη(1)}, λ ≥ 0. (7.1)

We assume all those are independent of each other. Consider the stochastic integral equation

y(t) = y(0) +

∫ t

0

√
2cy(s−)dB(s)− b

∫ t

0
y(s−)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0

zM̃(ds, dz, du) + η(t), (7.2)
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where M̃(ds, dz, du) = M(ds, dz, du)− dsm(dz)du denotes the compensated measure.

We understand the forth term on the right-hand side of (7.2) as an integral over the random set
{(s, z, u) : 0 < s ≤ t, 0 < z <∞, 0 < u ≤ y(s−)}. Similar interpretations are given for other
stochastic integral equations like (7.2).

By saying that {y(t) : t ≥ 0} is a weak solution to (7.2), we mean it is a positive càdlàg process
defined on some probability space with the noises {B(t)}, {M(ds, dz, du)} and {η(t)} such
that the equation holds almost surely for every t ≥ 0.

We refer to Ikeda and Watanabe (1989) and Situ (2005) for the basic theory of stochastic equa-
tions.

Theorem 7.1 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching and
immigration mechanisms (φ, ψ) given respectively by (2.9) and (1.8) if and only if it is a weak
solution to (7.2).

Let {M(ds, dz, du)} and {η(s)} be as in (7.2). Let {W (ds, du)} be a Gaussian time-space
white noise on (0,∞)2 with intensity 2cdsdu. We assume the noises are independent of each
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other. Consider the stochastic integral equation

y(t) = y(0) +

∫ t

0

∫ y(s−)

0

W (ds, du)− b
∫ t

0

y(s−)ds

+

∫ t

0

∫ ∞
0

∫ y(s−)

0
zM̃(ds, dz, du) + η(t). (7.3)

Theorem 7.2 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching and
immigration mechanisms (φ, ψ) given respectively by (2.9) and (1.8) if and only if it is a weak
solution to (7.3).

From (7.2) or (7.3) we see that the immigration of the CBI-process {y(t)} is represented by the
increasing Lévy process {η(t)}. By the Lévy–Itô decomposition, there is a Poisson time-space
random measure {N(ds, dz)} with intensity dsν(dz) such that

η(t) = βt+

∫ t

0

∫ ∞
0

zN(ds, dz), t ≥ 0.

Then the immigration of {y(t)} involves two parts: the continuous part determined by the drift
coefficient β and the discontinuous part given by the Poisson random measure {N(ds, dz)}.
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7.2 Strong solutions and comparisons

Theorem 7.3 For any initial value y(0) = x ≥ 0, there are pathwise unique positive (strong)
solutions to (7.2) and (7.3).

Theorem 7.4 Suppose that {y1(t) : t ≥ 0} and {y2(t) : t ≥ 0} are two positive solutions to
(7.3) with P{y1(0) ≤ y2(0)} = 1. Then we have P{y1(t) ≤ y2(t) for all t ≥ 0} = 1.

A comparison properties of the solutions to (7.2) can also be established.

7.3 The time-space white Lévy noise

Let {L(ds, du)} be the spectrally positive time-space (Gt)-Lévy white noise on (0,∞)2 defined
by

L(ds, du) = W (ds, du)− bdsdu+

∫
{0<z<∞}

zM̃(ds, dz, du). (7.4)
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We may rewrite (7.3) as

y(t) = y(0) +

∫ t

0

∫ y(s−)

0

L(ds, du) + η(t), t ≥ 0. (7.5)

7.4 Flow of CBI-processes

Let {L(ds, du)} be the Lévy time-space white noise on (0,∞)2 defined by (7.4). Let {η(t)}
be an increasing Lévy process with η(0) = 0 and with Laplace exponent given by (7.1). We
assume the noises are independent of each other.

By Theorem 7.3, for each v ≥ 0 there is a pathwise unique solution {Yt(v) : t ≥ 0} to

Yt(v) = v +

∫ t

0

∫ Ys−(v)

0

L(ds, du) + η(t). (7.6)

Recall that W denotes the space of positive càdlàg paths on [0,∞). Define the metric ρ by

ρ(w1, w2) = sup
s≥0

ebs|w1(s)− w2(s)|, w1, w2 ∈W. (7.7)
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Theorem 7.5 There is a version of the random field {Yt(v) : v ≥ 0, t ≥ 0} defined by (7.6)

with the following properties:

• The path-valued process {Y (v) : v ≥ 0} is increasing and ρ-càdlàg and has stationary
and independent increments.

• For any v2 ≥ v1 ≥ 0 the difference Y (v2) − Y (v1) = {Yt(v2) − Yt(v2) : t ≥ 0} is a
CB-process with transition semigroup (Qt)t≥0.

By Theorem 7.5, the path-valued process {Y (v) : v ≥ 0} is a Lévy process with state space
(W,W ). The initial state of {Y (v) : v ≥ 0} is the CBI-process Y (0) = {Yt(0) : t ≥ 0}.

7.5 Stable Lévy noises

Let c, q ≥ 0, b ∈ R and 1 < α < 2 be given constants. Let {B(t)} be a standard Brownian
motion. Let {z(t)} be a spectrally positive α-stable Lévy process with Lévy measure

γ(dz) := (α− 1)Γ(2− α)−1z−1−αdz, z > 0
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and {η(t)} an increasing Lévy process with η(0) = 0 and with Laplace exponent ψ. We assume
the noises are independent of each other. Consider the stochastic differential equation

dy(t) =
√

2cy(t−)dB(t) + α
√
αqy(t−)dz(t)− by(t−)dt+ dη(t), (7.8)

Theorem 7.6 A positive càdlàg process {y(t) : t ≥ 0} is a CBI-process with branching mecha-
nism φ(λ) = bλ+ cλ2 + qλα and immigration mechanism ψ given by (1.8) if and only if it is a
weak solution to (7.8).

Theorem 7.7 For any initial value y(0) = x ≥ 0, there is a pathwise unique positive strong
solution to (7.8).

7.6 Examples

Suppose that {ξn,i : n, i = 1, 2, . . .} and {ηn : n = 1, 2, . . .} are two independent families
of N-valued i.i.d. random variables. Given the initial state Y (0) ∈ N independent of {ξn,i} and
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{ηn}, we can define a discrete-state branching process with immigration by

Y (n) =

Y (n−1)∑
i=1

ξn,i + ηn, n ≥ 1. (7.9)

Example 7.8 The equation (7.3) can be thought as a continuous time-space counterpart of the
definition (7.9) of the DBI-process. In fact, assuming µ = E(ξ1,1) <∞, we have

Y (n) = Y (n− 1) +

Y (n−1)∑
i=1

(ξn,i − µ)− (1− µ)Y (n− 1) + ηn. (7.10)

It follows that

Y (n) = Y (0) +

n∑
k=1

Y (k−1)∑
i=1

(ξk,i − µ)− (1− µ)

n∑
k=1

Y (k − 1) +

n∑
k=1

ηk. (7.11)

The exact continuous time-space counterpart of (7.11) would be the stochastic integral equation

y(t) = y(0) +

∫ t

0

∫ ∞
0

∫ y(s−)

0

ξM̃(ds, dξ, du)−
∫ t

0

by(s−)ds+ η(t), (7.12)

which is a typical special form of (7.3); see Bertoin and Le Gall (2006) and Dawson and Li (2006).
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Example 7.9 The stochastic differential equation (7.8) captures the structure of the CBI-process
in a typical special case. Let 1 < α ≤ 2. Under the condition µ := E(ξ1,1) <∞, we have

Y (n)− Y (n− 1) = α
√
Y (n− 1)

Y (n−1)∑
i=1

ξn,i − µ
α
√
Y (n− 1)

− (1− µ)Y (n− 1) + ηn.

A continuous time-state counterpart of the above equation would be

dy(t) = α
√
αqy(t−)dz(t)− by(t)dt+ βdt, t ≥ 0, (7.13)

where {z(t) : t ≥ 0} is a standard Brownian motion if α = 2 and a spectrally positive α-stable
Lévy process. This is a typical special form of (7.8); see Fu and Li (2010).

Example 7.10 When α = 2 and β = 0, the solution to (7.13) is a diffusion process and known
as Feller’s branching diffusion. This process was first studied by Feller (1951).
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8 Recent topics and applications

8.1 Distributional properties of jumps

Let {x(t) : t ≥ 0} be a CB-process. For A ∈ B(0,∞) let

xA(t) = Card{s ∈ (0, t] : x(s)− x(s−) ∈ A},

τA = inf{s > 0 : x(s)− x(s−) ∈ A},

M(t) = max{x(s)− x(s−) : s ∈ (0, t]}.

Characterizations of the distributions of those random variables can be derived easily from the
stochastic equations, say,

x(t) = x(0) +

∫ t

0

∫ ∞
0

∫ x(s−)

0

zM̃(ds, dz, du),

xA(t) = 0 +

∫ t

0

∫
A

∫ y(s−)

0

M(ds, dz, du).

The equations show that {(x(t), xA(t)) : t ≥ 0} is a two-dimensional CB-process.
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8.2 Variation of the transition probabilities

Let x ≥ y ≥ 0 and let {x(t) : t ≥ 0} and y(t) : t ≥ 0} be CBI-processes defined by

x(t) = x+

∫ t

0

∫ x(s−)

0
L(ds, du) + η(t),

y(t) = y +

∫ t

0

∫ x(s−)

0
L(ds, du) + η(t).

Then {ξ(t) := x(t)− y(t) : t ≥ 0} is a CB-process since

ξ(t) = x− y +

∫ t

0

∫ ξ(s−)

0
L(ds, x(s−)+du).

This leads to the useful estimate for the variation of the transition probabilities:

‖Qt(x, ·)−Qt(y, ·)‖var = sup
‖f‖≤1

∣∣∣∣ ∫
[0,∞)

f(z)Qt(x, dz)−
∫

[0,∞)

f(z)Qt(y, dz)

∣∣∣∣
= sup
‖f‖≤1

∣∣E[f((x(t))]− E[f((y(t))]
∣∣

≤ sup
‖f‖≤1

E
[∣∣f((x(t))− f((y(t))

∣∣] ≤ 2P(ξ(t) 6= 0).
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8.3 Multi-dimensional CB-processes

8.4 Inhomogeneous CB-processes

8.5 Loewner theory for Bernstein functions

8.6 CBI-processes with competition

8.7 CB-processes in Lévy environments

8.8 General random environments
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