
The continuum Derrida–Retaux system

Bernard Derrida (Collège de France)
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Continuum Derrida–Retaux system: population of cells indexed by time parameter t∈ [0, 1)

▷ At time t = 0, one cell with size

x ∈ [0, ∞);

▷ Size of each cell increases

at constant speed 1;

▷ Each cell splits at rate 2m
(1−t)2

(m = size, t = time);

▷ Splitting: m⇒ (mU,m(1− U))

(U= (0, 1)-uniform).

⋄ Scaling limit of the discrete Derrida–Retaux model at criticality

(talk by Yueyun Hu, a few minutes ago).

⋄ A growth-fragmentation process in the sense of Bertoin (2017).
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System: splitting at rate 2m
(1−t)2

(m = size, t = time)

N(t) = number of cells at time t;

X1(t), . . ., XN(t)(t): sizes of cells;

M(t) = X1(t) + · · ·+XN(t)(t).

Hu, Mallein and Pain (2020).

∃c1, c2 ∈ (0, ∞): ∀x ≥ 0, when t → 1−,

(1− t)M(t) → c1ξ, (1− t)2N(t) → c2ξ, (jointly) in law,

ξ :=
∫ 1
0 ϱ(s)2 ds, (ϱ(s), s ∈ [0, 1]) 4-D Bessel bridge, ϱ(0) = 2

√
x, ϱ(1) = 0.

Theorem 1. ∀x ≥ 0, when t → 1−,

(1− t)M(t) → η∞, (1− t)2N(t) → η∞, Px-a.s.

η∞ distributed as 1
2

∫ 1

0
ϱ(s)2 ds.
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Splitting at rate 2m
(1−t)2

(m: size, t: time); X1(t), . . ., XN(t)(t): sizes at time t

Theorem 1. ∀x ≥ 0, when t → 1−, Px-a.s.,

(1− t)

N(t)∑
i=1

Xi(t) → η∞, (1− t)2N(t) → η∞.

Theorem 2. ∀x ≥ 0, when t → 1−, Px-a.s.,

(1− t)2
N(t)∑
i=1

δXi(t)

1−t

→ η∞γ weakly.

γ(dy) = 4y e−2y 1{y>0}dy.

Corollary. ∀x ≥ 0, Px-a.s.,
1

N(t)

N(t)∑
i=1

δXi(t)

1−t

→ γ weakly.

Bertoin and Watson (2020). Law of large numbers for

growth-fragmentation processes under general assumptions.
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Splitting at rate 2m
(1−t)2

(m: size, t: time); X1(t), . . ., XN(t)(t): sizes at time t

Technique: ∀x ≥ 0, ∀t ∈ [0, 1),

Ex

[
e
∑N(t)

i=1 f(t,Xi(t))
]

= ef(0,x) +

∫ t

0

Ex

[
e
∑N(r)

i=1 f(r,Xi(r))

N(r)∑
j=1

(Lf)(r, Xj(r))
]
dr .

L : explicit nonlinear operator.

Application: Lf = 0 ⇒ Ex[e
∑N(t)

k=1 f(t,Xi(t))] = ef(0, x).
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Can’t wait until they are done

Possible extensions:

⋄ More general branching mechanisms.

⋄ Overlaps.

⋄ Other interesting quantities

(example: number of branching events along each branch).
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